当前位置: 首页 > news >正文

sheng的学习笔记-AI-多分类学习:ECOC,softmax

目录:sheng的学习笔记-AI目录-CSDN博客

基本术语:

若我们欲预测的是离散值,例如“好瓜”“坏瓜”,此类学习任务称为“分类”(classification);

若欲预测的是连续值,例如西瓜成熟度0.95、0.37,此类学习任务称为“回归”(regression)。

只涉及两个类别的“二分类”(binary classification)任务,通常称其中一个类为“正类”(positive class),另一个类为“反类”(negative class);

涉及多个类别时,则称为“多分类”(multi-class classification)任务。比如跟进图片判断图片中的水果是 苹果,梨,西瓜

多分类学习模型

现实中常遇到多分类学习任务。有些二分类学习方法可直接推广到多分类,但在更多情形下,我们是基于一些基本策略,利用二分类学习器来解决多分类问题

通常称分类学习器为“分类器”(classifier)。

考虑N个类别C1,C2,...,CN,多分类学习的基本思路是“拆解法”,即将多分类任务拆为若干个二分类任务求解。

具体来说,先对问题进行拆分,然后为拆出的每个二分类任务训练一个分类器;在测试时,对这些分类器的预测结果进行集成以获得最终的多分类结果。这里的关键是如何对多分类任务进行拆分,以及如何对多个分类器进行集成。

OvR

OvR亦称OvA(One vs.All)。最经典的拆分策略有三种:“一对一”(One vs.One,简称OvO)、“一对其余”(One vs.Rest,简称OvR)和“多对多”(Many vs.Many,简称MvM)

OvO

“一对一”(One vs.One,简称OvO)

给定数据集D={(x1,y1),(x2,y2),...,(xm,ym)},yi∈{C1,C2,...,CN}。OvO将这N个类别两两配对,从而产生N(N-1)/2个二分类任务,例如OvO将为区分类别Ci和Cj训练一个分类器,该分类器把D中的Ci类样例作为正例,Cj类样例作为反例。在测试阶段,新样本将同时提交给所有分类器,于是我们将得到N(N-1)/2个分类结果,最终结果可通过投票产生:即把被预测得最多的类别作为最终分类结果

OvR

“一对其余”(One vs.Rest,简称OvR),OvR则是每次将一个类的样例作为正例、所有其他类的样例作为反例来训练N个分类器。在测试时若仅有一个分类器预测为正类,则对应的类别标记作为最终分类结果,如图3.4所示。若有多个分类器预测为正类,则通常考虑各分类器的预测置信度,选择置信度最大的类别标记作为分类结果。说白了,如果c1,c2都是+,但c1的预测结果是0.6,c2的预测结果是0.8,那就选c2

OvO和OvR对比

OvR只需训练N个分类器,而OvO需训练N(N-1)/2个分类器,因此,OvO的存储开销和测试时间开销通常比OvR更大。但在训练时,OvR的每个分类器均使用全部训练样例,而OvO的每个分类器仅用到两个类的样例,因此,在类别很多时,OvO的训练时间开销通常比OvR更小。至于预测性能,则取决于具体的数据分布,在多数情形下两者差不多

MvM

“多对多”(Many vs.Many,简称MvM)MvM是每次将若干个类作为正类,若干个其他类作为反类。显然,OvO和OvR是MvM的特例。MvM的正、反类构造必须有特殊的设计,不能随意选取。

ECOC(一种MvM的方法)

Error Correcting Output Codes,简称ECOC,

ECOC[Dietterich and Bakiri,1995]是将编码的思想引入类别拆分,并尽可能在解码过程中具有容错性。ECOC工作过程主要分为两步:

编码:

对N个类别做M次划分,每次划分将一部分类别划为正类,一部分划为反类,从而形成一个二分类训练集;这样一共产生M个训练集,训练出M个分类器。

解码:

M个分类器分别对测试样本进行预测,这些预测标记组成一个编码。将这个预测编码与每个类别各自的编码进行比较,返回其中距离最小的类别作为最终预测结果。类别划分通过“编码矩阵”(coding matrix)指定。

编码矩阵有多种形式,常见的主要有二元码[Dietterich and Bakiri,1995]和三元码[Allwein et al.,2000]。前者将每个类别分别指定为正类和反类,后者在正、反类之外,还可指定“停用类”。下图中a,分类器f2将C1类和C3类的样例作为正例,C2类和C4类的样例作为反例;

在图b中,分类器f4将C1类和C4类的样例作为正例,C3类的样例作为反例。在解码阶段,各分类器的预测结果联合起来形成了测试示例的编码,该编码与各类所对应的编码进行比较,将距离最小的编码所对应的类别作为预测结果。例如在图3.5(a)中,若基于欧氏距离,预测结果将是C3。

示意图

原理

测试阶段,ECOC编码对分类器的错误有一定的容忍和修正能力。例如图3.5(a)中对测试示例的正确预测编码是(-1,+1,+1,-1,+1),假设在预测时某个分类器出错了,例如f2出错从而导致了错误编码(-1,-1,+1,-1,+1),但基于这个编码仍能产生正确的最终分类结果C3。

一般来说,对同一个学习任务,ECOC编码越长,纠错能力越强。然而,编码越长,意味着所需训练的分类器越多,计算、存储开销都会增大;另一方面,对有限类别数,可能的组合数目是有限的,码长超过一定范围后就失去了意义。对同等长度的编码,理论上来说,任意两个类别之间的编码距离越远,则纠错能力越强。因此,在码长较小时可根据这个原则计算出理论最优编码。然而,码长稍大一些就难以有效地确定最优编码,事实上这是NP难问题。不过,通常我们并不需获得理论最优编码,因为非最优编码在实践中往往已能产生足够好的分类器。另一方面,并不是编码的理论性质越好,分类性能就越好

Softmax回归(Softmax regression)

Softmax回归(Softmax regression),也称为多项(Multinomial)或多类(Multi-Class)的Logistic回归,是Logistic回归在多分类问题上的推广。

假设你想识别猫,狗和小鸡,把猫加做类1,狗为类2,小鸡是类3,如果不属于以上任何一类,叫做类0。

这里显示的图片及其对应的分类就是一个例子,这幅图片上是一只小鸡,所以是类3,猫是类1,狗是类2,我猜这是一只考拉,那就是类0,下一个类3,以此类推。

softmax回归有个特别的地方:

个激活函数 需要输入一个4×1维向量,然后输出一个4×1维向量。之前,我们的激活函数都是接受单行数值输入,例如SigmoidReLu激活函数,输入一个实数,输出一个实数。Softmax激活函数的特殊之处在于,因为需要将所有可能的输出归一化,就需要输入一个向量,最后输出一个向量。

一般在多分类的输出层用softmax函数,但在训练过程中,一般用ReLu或Sigmoid

公式

在L层,在公式 z = wx + b中,假设得到结果z,设一个变量t,如下图

最后的公式是,注意,这四个值加起来等于1

在最后输出就是第一个值,最大的0.842

整体架构图:

参考资料:

书:机器学习 周志华。俗称西瓜书

吴恩达的深度学习

相关文章:

sheng的学习笔记-AI-多分类学习:ECOC,softmax

目录:sheng的学习笔记-AI目录-CSDN博客 基本术语: 若我们欲预测的是离散值,例如“好瓜”“坏瓜”,此类学习任务称为“分类”(classification); 若欲预测的是连续值,例如西瓜成熟度0.95、0.37,…...

ChatGPT Plus 支付出现「您的银行卡被拒绝/your card has been declined」怎么办?

ChatGPT Plus 支付出现「您的银行卡被拒绝/your card has been declined」怎么办? 在订阅 ChatGPT Plus 或者 OpenAI API 时,有时候会出现已下报错 : Your card has been declined. 您的银行卡被拒绝 出现这种错误,有以下几个解…...

typescript学习(更新中)

目录 开发环境搭建类型如何声明有哪些类型编译配置文件 开发环境搭建 npm i -g typescripttsc检查是否安装成功 类型如何声明 // 先声明再赋值 let a: number a 1// 直接赋值 let b 1function sum(a: number, b: number): number {return a b } console.log(sum(1, 2))有…...

T2 小美的平衡矩阵(25分) - 美团编程题 题解

考试平台: 牛客网 题目类型: 30道单选题(60分) 2 道编程题 (15分 25分) 考试时间: 2024-03-09 (两小时) 题目描述 小美拿到了一个n*n的矩阵,其中每个元素是…...

13:大数据与Hadoop|分布式文件系统|分布式Hadoop集群

大数据与Hadoop|分布式文件系统|分布式Hadoop集群 Hadoop部署Hadoop HDFS分布式文件系统HDFS部署步骤一:环境准备HDFS配置文件 查官方手册配置Hadoop集群 日志与排错 mapreduce 分布式离线计算框架YARN集群资源管理系统步骤一:安装…...

前端知识点、技巧、webpack、性能优化(持续更新~)

1、 请求太多 页面加载慢 (webpack性能优化) 可以把 图片转换成 base64 放在src里面 减少服务器请求 但是图片会稍微大一点点 以上的方法不需要一个一个自己转化 可以在webpack 进行 性能优化 (官网有详细描述)...

红队专题-开源漏扫-巡风xunfeng源码剖析与应用

开源漏扫-巡风xunfeng 介绍主体两部分:网络资产识别引擎,漏洞检测引擎。代码赏析插件编写JSON标示符Python脚本此外系统内嵌了辅助验证功能文件结构功能 模块添加IP三. 进行扫描在这里插入图片描述 ![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/de587a6f6f694…...

统计接口调用耗时情况设计思路(大厂面试题)

gateway统计接口调用耗时情况设计思路(大厂面试题) 详情视频可以去看尚硅谷2024周阳老师的springCloud P86 知识出处自定义全局过滤器官网https://docs.spring.io/spring-cloud-gateway/docs/current/reference/html/#gateway-combined-global-filter-…...

Elasticsearch:什么是 DevOps?

DevOps 定义 DevOps 是一种现代软件开发方法,它将公司软件开发 (Dev) 和 IT 运营 (Ops) 团队的工作结合起来并实现自动化。 DevOps 提倡这样一种理念:这些传统上独立的团队在协作方面比在孤岛中更有效。 理想情况下,DevOps 团队共同努力改进…...

C语言基础练习——Day03

目录 选择题 编程题 记负均正 旋转数组的最小数字 选择题 1、已知函数的原型是:int fun(char b[10], int *a);,设定义:char c[10];int d;,正确的调用语句是 A fun(c,&d);B fun(c,d);C fun(&c,&d);D fun(&c,d); 答…...

膜厚测量仪在半导体应用中及其重要

随着科技的不断发展,半导体行业已成为当今世界的核心产业之一。在这个领域中,半导体膜厚测量仪作为关键设备,其精度和可靠性对于产品质量和生产效率具有至关重要的作用。本文将详细介绍半导体膜厚测量仪的工作原理、应用领域以及其在半导体制…...

【前端】-初始前端以及html的学习

💖作者:小树苗渴望变成参天大树🎈 🎉作者宣言:认真写好每一篇博客💤 🎊作者gitee:gitee✨ 💞作者专栏:C语言,数据结构初阶,Linux,C 动态规划算法🎄 如 果 你 …...

uni-app navigateTo路由传参传递对象

传递参数 先通过JSON.stringify将对象转成字符串 toNextPage(obj) {uni.navigateTo({url:/pages/nextpage/index?obj${JSON.stringify(obj)}}); },接收参数 再通过JSON.parse将传递过来的字符串转成对象 onLoad(options) {this.obj JSON.parse(options.obj) }...

99 centos 7 服务器上面 增加了 2181 的防火墙配置, 但是客户端连接不上

呵呵 最近部署 zookeeper 的时候出现这样的一个问题 centos 7 服务器上面 增加了 2181 的防火墙配置, 但是客户端连接不上 # 但是再 另外的一个虚拟机环境, ubuntu 16 的环境, docker 启动 2181 的服务, 然后 安装 firewalld, 配置 开放 2181 的 tcp 服务, 客户端能够正常连接…...

云计算科学与工程实践指南--章节引言收集

云计算科学与工程实践指南–章节引言收集 //本文收集 【云计算科学与工程实践指南】 书中每一章节的引言。 我已厌倦了在一本书中阅读云的定义。难道你不失望吗?你正在阅读一个很好的故事,突然间作者必须停下来介绍云。谁在乎云是什么? 通…...

探索Web中的颜色选择:不同取色方法的实现

在Web开发中,提供用户选择颜色的功能是很常见的需求。无论是为了个性化UI主题,还是为了图像编辑工具,一个直观且易用的取色器都是必不可少的。本文将介绍几种在Web应用中实现取色功能的方法,从简单的HTML输入到利用现代API的高级技…...

突破编程_C++_设计模式(策略模式)

1 策略模式的概念 策略模式(Strategy Pattern)是 C 中常用的一种行为设计模式,它能在运行时改变对象的行为。在策略模式中,一个类的行为或其算法可以在运行时更改。这种类型的设计模式属于行为模式。 在策略模式中,需…...

【uniapp】uniapp小程序中实现拍照同时打开闪光灯的功能,拍照闪光灯实现

一、需求前提 特殊场景中,需要拍照的同时打开闪光灯,(例如黑暗场景下的设备维护巡检功能)。 起初我是用的uviewui中的u-upload组件自带的拍照功能,但是这个不支持拍照时打开闪光灯,也不支持从通知栏中打开…...

在python model train里如何驯服野生log?

关键词:python 、epoch、loss、log 🤖: 记录模型的训练过程的步骤如下: 导入logging模块。配置日志记录器,设置日志文件名、日志级别、日志格式等。在每个epoch结束时,使用logging模块记录性能指标、损失值、准确率等信…...

产品推荐 - Xilinx FPGA下载器 XQ-HS/STM2

1 FPGA下载器简介 1.性能优良 FPGA下载器XQ-HS/STM2采用Xilinx下载模块设计而成(JTAG-SMT2NC模块,该模块与Xilinx官方开发板KC705,KCU105,ZC702,ZC706,Zedboard等板载下载器一样,下载速度快…...

k8s从入门到放弃之Ingress七层负载

k8s从入门到放弃之Ingress七层负载 在Kubernetes(简称K8s)中,Ingress是一个API对象,它允许你定义如何从集群外部访问集群内部的服务。Ingress可以提供负载均衡、SSL终结和基于名称的虚拟主机等功能。通过Ingress,你可…...

【位运算】消失的两个数字(hard)

消失的两个数字(hard) 题⽬描述:解法(位运算):Java 算法代码:更简便代码 题⽬链接:⾯试题 17.19. 消失的两个数字 题⽬描述: 给定⼀个数组,包含从 1 到 N 所有…...

oracle与MySQL数据库之间数据同步的技术要点

Oracle与MySQL数据库之间的数据同步是一个涉及多个技术要点的复杂任务。由于Oracle和MySQL的架构差异,它们的数据同步要求既要保持数据的准确性和一致性,又要处理好性能问题。以下是一些主要的技术要点: 数据结构差异 数据类型差异&#xff…...

html-<abbr> 缩写或首字母缩略词

定义与作用 <abbr> 标签用于表示缩写或首字母缩略词&#xff0c;它可以帮助用户更好地理解缩写的含义&#xff0c;尤其是对于那些不熟悉该缩写的用户。 title 属性的内容提供了缩写的详细说明。当用户将鼠标悬停在缩写上时&#xff0c;会显示一个提示框。 示例&#x…...

关键领域软件测试的突围之路:如何破解安全与效率的平衡难题

在数字化浪潮席卷全球的今天&#xff0c;软件系统已成为国家关键领域的核心战斗力。不同于普通商业软件&#xff0c;这些承载着国家安全使命的软件系统面临着前所未有的质量挑战——如何在确保绝对安全的前提下&#xff0c;实现高效测试与快速迭代&#xff1f;这一命题正考验着…...

用机器学习破解新能源领域的“弃风”难题

音乐发烧友深有体会&#xff0c;玩音乐的本质就是玩电网。火电声音偏暖&#xff0c;水电偏冷&#xff0c;风电偏空旷。至于太阳能发的电&#xff0c;则略显朦胧和单薄。 不知你是否有感觉&#xff0c;近两年家里的音响声音越来越冷&#xff0c;听起来越来越单薄&#xff1f; —…...

[大语言模型]在个人电脑上部署ollama 并进行管理,最后配置AI程序开发助手.

ollama官网: 下载 https://ollama.com/ 安装 查看可以使用的模型 https://ollama.com/search 例如 https://ollama.com/library/deepseek-r1/tags # deepseek-r1:7bollama pull deepseek-r1:7b改token数量为409622 16384 ollama命令说明 ollama serve #&#xff1a…...

第7篇:中间件全链路监控与 SQL 性能分析实践

7.1 章节导读 在构建数据库中间件的过程中&#xff0c;可观测性 和 性能分析 是保障系统稳定性与可维护性的核心能力。 特别是在复杂分布式场景中&#xff0c;必须做到&#xff1a; &#x1f50d; 追踪每一条 SQL 的生命周期&#xff08;从入口到数据库执行&#xff09;&#…...

人工智能--安全大模型训练计划:基于Fine-tuning + LLM Agent

安全大模型训练计划&#xff1a;基于Fine-tuning LLM Agent 1. 构建高质量安全数据集 目标&#xff1a;为安全大模型创建高质量、去偏、符合伦理的训练数据集&#xff0c;涵盖安全相关任务&#xff08;如有害内容检测、隐私保护、道德推理等&#xff09;。 1.1 数据收集 描…...

【若依】框架项目部署笔记

参考【SpringBoot】【Vue】项目部署_no main manifest attribute, in springboot-0.0.1-sn-CSDN博客 多一个redis安装 准备工作&#xff1a; 压缩包下载&#xff1a;http://download.redis.io/releases 1. 上传压缩包&#xff0c;并进入压缩包所在目录&#xff0c;解压到目标…...