当前位置: 首页 > news >正文

【PCL】(二十七)基于法线差的点云分割

(二十七)基于法线差的点云分割


图片来源

提出这个方法的论文:Difference of Normals as a Multi-Scale Operator in Unorganized Point Clouds

算法流程:

  • 在大尺度的范围内(半径 r 1 r_1 r1)估计每个点的法线;

  • 在晓尺度的范围(半径 r 2 r_2 r2)估计每个点的法线;

  • 计算法线差(Difference of Normals (DoN));

  • 根据设定的法线差阈值过滤点;

  • 对剩余的点进行欧几里得分割。

don_segmentation.cpp

/*** @file don_segmentation.cpp* Difference of Normals Example for PCL Segmentation Tutorials.** @author Yani Ioannou* @date 2012-09-24*/
#include <string>
#include <pcl/point_types.h>
#include <pcl/io/pcd_io.h>
#include <pcl/search/organized.h>
#include <pcl/search/kdtree.h>
#include <pcl/features/normal_3d_omp.h>
#include <pcl/filters/conditional_removal.h>
#include <pcl/segmentation/extract_clusters.h>
#include <pcl/features/don.h>using namespace pcl;int main (int argc, char *argv[])
{///The smallest scale to use in the DoN filter.double scale1;///The largest scale to use in the DoN filter.double scale2;///The minimum DoN magnitude to threshold bydouble threshold;///segment scene into clusters with given distance tolerance using euclidean clusteringdouble segradius;if (argc < 6){std::cerr << "usage: " << argv[0] << " inputfile smallscale largescale threshold segradius" << std::endl;exit (EXIT_FAILURE);}/// the file to read from.std::string infile = argv[1];/// small scalestd::istringstream (argv[2]) >> scale1;/// large scalestd::istringstream (argv[3]) >> scale2;std::istringstream (argv[4]) >> threshold;   // threshold for DoN magnitudestd::istringstream (argv[5]) >> segradius;   // threshold for radius segmentation// Load cloud in blob formatpcl::PCLPointCloud2 blob;pcl::io::loadPCDFile (infile.c_str (), blob);pcl::PointCloud<PointXYZRGB>::Ptr cloud (new pcl::PointCloud<PointXYZRGB>);pcl::fromPCLPointCloud2 (blob, *cloud);// OrganizedNeighbor适用于有组织的数据。KDTree适用于无组织的数据pcl::search::Search<PointXYZRGB>::Ptr tree;if (cloud->isOrganized ()){tree.reset (new pcl::search::OrganizedNeighbor<PointXYZRGB> ());}else{tree.reset (new pcl::search::KdTree<PointXYZRGB> (false));}// Set the input pointcloud for the search treetree->setInputCloud (cloud);if (scale1 >= scale2){std::cerr << "Error: Large scale must be > small scale!" << std::endl;exit (EXIT_FAILURE);}// 计算每个点小尺度和大尺度的法线// 通过OpenMP多线程,使用处理器中的多个内核来计算法线pcl::NormalEstimationOMP<PointXYZRGB, PointNormal> ne;  // PointNormal-float x,y,z,normal[3], curvaturene.setInputCloud (cloud);ne.setSearchMethod (tree);// 设置一个在所有法线计算中使用的视点,确保了在不同尺度上估计的法线的基本方向一致。ne.setViewPoint (std::numeric_limits<float>::max (), std::numeric_limits<float>::max (), std::numeric_limits<float>::max ());// calculate normals with the small scalestd::cout << "Calculating normals for scale..." << scale1 << std::endl;pcl::PointCloud<PointNormal>::Ptr normals_small_scale (new pcl::PointCloud<PointNormal>);ne.setRadiusSearch (scale1);ne.compute (*normals_small_scale);// calculate normals with the large scalestd::cout << "Calculating normals for scale..." << scale2 << std::endl;pcl::PointCloud<PointNormal>::Ptr normals_large_scale (new pcl::PointCloud<PointNormal>);ne.setRadiusSearch (scale2);ne.compute (*normals_large_scale);// Create output cloud for DoN resultsPointCloud<PointNormal>::Ptr doncloud (new pcl::PointCloud<PointNormal>);copyPointCloud (*cloud, *doncloud);std::cout << "Calculating DoN... " << std::endl;// DoN 估计模板的3个参数<第一个对应于输入点云类型,第二个对应于为点云估计的法线类型.第三个对应于输出类型pcl::DifferenceOfNormalsEstimation<PointXYZRGB, PointNormal, PointNormal> don;don.setInputCloud (cloud);don.setNormalScaleLarge (normals_large_scale);don.setNormalScaleSmall (normals_small_scale);if (!don.initCompute ()){std::cerr << "Error: Could not initialize DoN feature operator" << std::endl;exit (EXIT_FAILURE);}// Compute DoNdon.computeFeature (*doncloud);// Save DoN featurespcl::PCDWriter writer;writer.write<pcl::PointNormal> ("don.pcd", *doncloud, false); std::cout << "Filtering out DoN mag <= " << threshold << "..." << std::endl;// 设定滤波条件,根据点的法线差矢量过滤点 pcl::ConditionOr<PointNormal>::Ptr range_cond (new pcl::ConditionOr<PointNormal> ());// "curvature" :过滤DoN的l2范数小于threshold的点range_cond->addComparison (pcl::FieldComparison<PointNormal>::ConstPtr (new pcl::FieldComparison<PointNormal> ("curvature", pcl::ComparisonOps::GT, threshold)));// 创建条件滤波器pcl::ConditionalRemoval<PointNormal> condrem;condrem.setCondition (range_cond);condrem.setInputCloud (doncloud);pcl::PointCloud<PointNormal>::Ptr doncloud_filtered (new pcl::PointCloud<PointNormal>);// Apply filtercondrem.filter (*doncloud_filtered);doncloud = doncloud_filtered;// Save filtered outputstd::cout << "Filtered Pointcloud: " << doncloud->size () << " data points." << std::endl;writer.write<pcl::PointNormal> ("don_filtered.pcd", *doncloud, false); // 欧几里得聚类分割std::cout << "Clustering using EuclideanClusterExtraction with tolerance <= " << segradius << "..." << std::endl;pcl::search::KdTree<PointNormal>::Ptr segtree (new pcl::search::KdTree<PointNormal>);segtree->setInputCloud (doncloud);std::vector<pcl::PointIndices> cluster_indices;pcl::EuclideanClusterExtraction<PointNormal> ec;ec.setClusterTolerance (segradius);ec.setMinClusterSize (50);ec.setMaxClusterSize (100000);ec.setSearchMethod (segtree);ec.setInputCloud (doncloud);ec.extract (cluster_indices);int j = 0;for (const auto& cluster : cluster_indices){pcl::PointCloud<PointNormal>::Ptr cloud_cluster_don (new pcl::PointCloud<PointNormal>);for (const auto& idx : cluster.indices){cloud_cluster_don->points.push_back ((*doncloud)[idx]);}cloud_cluster_don->width = cloud_cluster_don->size ();cloud_cluster_don->height = 1;cloud_cluster_don->is_dense = true;//Save clusterstd::cout << "PointCloud representing the Cluster: " << cloud_cluster_don->size () << " data points." << std::endl;std::stringstream ss;ss << "don_cluster_" << j << ".pcd";writer.write<pcl::PointNormal> (ss.str (), *cloud_cluster_don, false);++j;}
}

CMakeLists.txt

cmake_minimum_required(VERSION 3.5 FATAL_ERROR)project(don_segmentation)find_package(PCL 1.7 REQUIRED)include_directories(${PCL_INCLUDE_DIRS})
link_directories(${PCL_LIBRARY_DIRS})
add_definitions(${PCL_DEFINITIONS})add_executable (don_segmentation don_segmentation.cpp)
target_link_libraries (don_segmentation ${PCL_LIBRARIES})

数据样例

编译并运行:

$ ./don_segmentation <inputfile> <smallscale> <largescale> <threshold> <segradius>
$./don_segmentation 003000.pcd 0.4 2 0.2 0.5

DoN:
在这里插入图片描述

根据DoN滤除点:

聚类:

相关文章:

【PCL】(二十七)基于法线差的点云分割

&#xff08;二十七&#xff09;基于法线差的点云分割 图片来源 提出这个方法的论文&#xff1a;Difference of Normals as a Multi-Scale Operator in Unorganized Point Clouds 算法流程&#xff1a; 在大尺度的范围内&#xff08;半径 r 1 r_1 r1​&#xff09;估计每个点…...

智慧公厕系统的组成部分有什么?

智慧公厕系统是现代城市管理中一项重要的创新&#xff0c;利用物联网、互联网、大数据、云计算、自动化控制等先进的技术手段&#xff0c;提供高效便捷的公厕服务。从信息系统的角度来看&#xff0c;智慧公厕系统主要由硬件、软件和网络组成&#xff0c;硬件、软件和网络三大部…...

[数据集][目标检测]芒果叶病害数据集VOC+YOLO格式4000张5类别

数据集格式&#xff1a;Pascal VOC格式YOLO格式(不包含分割路径的txt文件&#xff0c;仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数)&#xff1a;4000 标注数量(xml文件个数)&#xff1a;4000 标注数量(txt文件个数)&#xff1a;4000 标注…...

Linux: 预备

计算机结构基础 操作系统: 内核 (管理软硬件) shell(给用户使用操作系统的方式) 操作系统的目标 对硬件抽象 原因:操作系统是对软硬件资源管理的应用软件抽象:内存管理, 进程管理, 文件管理, 驱动管理软件:驱动程序(给软件提供访问硬件的软件)硬件:磁盘(对应文件), 网卡等隔离…...

ChatGPT 升级出现「我们未能验证您的支付方式/we are unable to authenticate」怎么办?

ChatGPT 升级出现「我们未能验证您的支付方式/we are unable to authenticate」怎么办&#xff1f; 在订阅 ChatGPT Plus 时&#xff0c;有时候会出现以下报错 &#xff1a; We are unable to authenticate your payment method. 我们未能验证您的支付方式。 出现 unable to a…...

JavaWeb - 3 - JavaScript(JS)

JavaScript(JS)官方参考文档&#xff1a;JavaScript 教程 JavaScript&#xff08;简称&#xff1a;JS&#xff09;是一门跨平台、面向对象的脚本语言&#xff0c;是用来控制网页行为的&#xff0c;它能使网页可交互&#xff08;脚本语言就不需要编译&#xff0c;直接通过浏览器…...

基于springboot+vue的美食烹饪互动平台

博主主页&#xff1a;猫头鹰源码 博主简介&#xff1a;Java领域优质创作者、CSDN博客专家、阿里云专家博主、公司架构师、全网粉丝5万、专注Java技术领域和毕业设计项目实战&#xff0c;欢迎高校老师\讲师\同行交流合作 ​主要内容&#xff1a;毕业设计(Javaweb项目|小程序|Pyt…...

linux中操作服务器常用命令

在Linux中操作服务器时&#xff0c;常用的命令包括&#xff1a; ls&#xff1a;列出目录内容。 cd&#xff1a;切换目录。 pwd&#xff1a;显示当前所在的目录路径。 mkdir&#xff1a;创建一个新的目录。 rmdir&#xff1a;删除一个空的目录。 cp&#xff1a;复制文件或目录。…...

最简k8s部署(AWS Load Balancer Controller使用)

问题 我需要在k8s集群里面部署springboot服务&#xff0c;通过k8s ingress访问集群内部的springboot服务&#xff0c;应该怎么做&#xff1f; 这里假设已经准备好k8s集群&#xff0c;而且也准备好springboot服务的运行镜像了。这里我们将精力放在k8s服务编排上面。 一图胜千言…...

差距拉开了!量化大厂最新业绩排行曝光!

经历了一月份的失落和二月份绝地反攻&#xff0c;量化大厂们的整体业绩备受关注。 而今年2月份的量化战绩&#xff0c;甚为关键&#xff01; 毕竟市场指数“前低后高”&#xff0c;基金经理与投资人开年以来&#xff0c;共同经历了“惊心动魄”的考验。 量化大厂&#xff0c…...

【Web前端】Vue核心基础

文章目录 1. Vue简介2. Vue官网使用指南3. 初识Vue3.1 搭建Vue开发环境3.2 HelloWorld案例3.3 el与data的两种写法3.4 MVVM模型3.5 模板语法 4. 数据绑定4.1 v-bind单向数据绑定4.2 v-model双向数据绑定 5. 事件处理5.1 v-on绑定事件5.2 事件修饰符5.3 键盘事件 6. 计算属性6.1…...

Linux操作系统项目上传Github代码仓库指南

文章目录 1 创建SSH key2.本地git的用户名和邮箱设置3.测试连接4.创建仓库5.终端项目上传 1 创建SSH key 1.登录github官网,点击个人头像,点击Settings,然后点击SSH and GPG keys,再点击New SSH key。 Title 可以随便取&#xff0c;但是 key 需要通过终端生成。 Linux终端执行…...

机器学习--循环神经网路(RNN)2

在这篇文章中&#xff0c;我们介绍一下其他的RNN。 一.深层RNN 循环神经网络的架构是可以任意设计的&#xff0c;之前提到的 RNN 只有一个隐藏层&#xff0c;但 RNN 也可以是深层的。比如把 xt 丢进去之后&#xff0c;它可以通过一个隐藏层&#xff0c;再通过第二个隐藏层&am…...

sheng的学习笔记-AI-多分类学习:ECOC,softmax

目录&#xff1a;sheng的学习笔记-AI目录-CSDN博客 基本术语&#xff1a; 若我们欲预测的是离散值&#xff0c;例如“好瓜”“坏瓜”&#xff0c;此类学习任务称为“分类”(classification)&#xff1b; 若欲预测的是连续值&#xff0c;例如西瓜成熟度0.95、0.37&#xff0c;…...

ChatGPT Plus 支付出现「您的银行卡被拒绝/your card has been declined」怎么办?

ChatGPT Plus 支付出现「您的银行卡被拒绝/your card has been declined」怎么办&#xff1f; 在订阅 ChatGPT Plus 或者 OpenAI API 时&#xff0c;有时候会出现已下报错 &#xff1a; Your card has been declined. 您的银行卡被拒绝 出现这种错误&#xff0c;有以下几个解…...

typescript学习(更新中)

目录 开发环境搭建类型如何声明有哪些类型编译配置文件 开发环境搭建 npm i -g typescripttsc检查是否安装成功 类型如何声明 // 先声明再赋值 let a: number a 1// 直接赋值 let b 1function sum(a: number, b: number): number {return a b } console.log(sum(1, 2))有…...

T2 小美的平衡矩阵(25分) - 美团编程题 题解

考试平台&#xff1a; 牛客网 题目类型&#xff1a; 30道单选题&#xff08;60分&#xff09; 2 道编程题 &#xff08;15分 25分&#xff09; 考试时间&#xff1a; 2024-03-09 &#xff08;两小时&#xff09; 题目描述 小美拿到了一个n*n的矩阵&#xff0c;其中每个元素是…...

13:大数据与Hadoop|分布式文件系统|分布式Hadoop集群

大数据与Hadoop&#xff5c;分布式文件系统&#xff5c;分布式Hadoop集群 Hadoop部署Hadoop HDFS分布式文件系统HDFS部署步骤一&#xff1a;环境准备HDFS配置文件 查官方手册配置Hadoop集群 日志与排错 mapreduce 分布式离线计算框架YARN集群资源管理系统步骤一&#xff1a;安装…...

前端知识点、技巧、webpack、性能优化(持续更新~)

1、 请求太多 页面加载慢 &#xff08;webpack性能优化&#xff09; 可以把 图片转换成 base64 放在src里面 减少服务器请求 但是图片会稍微大一点点 以上的方法不需要一个一个自己转化 可以在webpack 进行 性能优化 &#xff08;官网有详细描述&#xff09;...

红队专题-开源漏扫-巡风xunfeng源码剖析与应用

开源漏扫-巡风xunfeng 介绍主体两部分:网络资产识别引擎,漏洞检测引擎。代码赏析插件编写JSON标示符Python脚本此外系统内嵌了辅助验证功能文件结构功能 模块添加IP三. 进行扫描在这里插入图片描述 ![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/de587a6f6f694…...

装饰模式(Decorator Pattern)重构java邮件发奖系统实战

前言 现在我们有个如下的需求&#xff0c;设计一个邮件发奖的小系统&#xff0c; 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式&#xff08;Decorator Pattern&#xff09;允许向一个现有的对象添加新的功能&#xff0c;同时又不改变其…...

【根据当天日期输出明天的日期(需对闰年做判定)。】2022-5-15

缘由根据当天日期输出明天的日期(需对闰年做判定)。日期类型结构体如下&#xff1a; struct data{ int year; int month; int day;};-编程语言-CSDN问答 struct mdata{ int year; int month; int day; }mdata; int 天数(int year, int month) {switch (month){case 1: case 3:…...

day52 ResNet18 CBAM

在深度学习的旅程中&#xff0c;我们不断探索如何提升模型的性能。今天&#xff0c;我将分享我在 ResNet18 模型中插入 CBAM&#xff08;Convolutional Block Attention Module&#xff09;模块&#xff0c;并采用分阶段微调策略的实践过程。通过这个过程&#xff0c;我不仅提升…...

DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI

前一阵子在百度 AI 开发者大会上&#xff0c;看到基于小智 AI DIY 玩具的演示&#xff0c;感觉有点意思&#xff0c;想着自己也来试试。 如果只是想烧录现成的固件&#xff0c;乐鑫官方除了提供了 Windows 版本的 Flash 下载工具 之外&#xff0c;还提供了基于网页版的 ESP LA…...

Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)

引言&#xff1a;为什么 Eureka 依然是存量系统的核心&#xff1f; 尽管 Nacos 等新注册中心崛起&#xff0c;但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制&#xff0c;是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...

企业如何增强终端安全?

在数字化转型加速的今天&#xff0c;企业的业务运行越来越依赖于终端设备。从员工的笔记本电脑、智能手机&#xff0c;到工厂里的物联网设备、智能传感器&#xff0c;这些终端构成了企业与外部世界连接的 “神经末梢”。然而&#xff0c;随着远程办公的常态化和设备接入的爆炸式…...

视频行为标注工具BehaviLabel(源码+使用介绍+Windows.Exe版本)

前言&#xff1a; 最近在做行为检测相关的模型&#xff0c;用的是时空图卷积网络&#xff08;STGCN&#xff09;&#xff0c;但原有kinetic-400数据集数据质量较低&#xff0c;需要进行细粒度的标注&#xff0c;同时粗略搜了下已有开源工具基本都集中于图像分割这块&#xff0c…...

08. C#入门系列【类的基本概念】:开启编程世界的奇妙冒险

C#入门系列【类的基本概念】&#xff1a;开启编程世界的奇妙冒险 嘿&#xff0c;各位编程小白探险家&#xff01;欢迎来到 C# 的奇幻大陆&#xff01;今天咱们要深入探索这片大陆上至关重要的 “建筑”—— 类&#xff01;别害怕&#xff0c;跟着我&#xff0c;保准让你轻松搞…...

R 语言科研绘图第 55 期 --- 网络图-聚类

在发表科研论文的过程中&#xff0c;科研绘图是必不可少的&#xff0c;一张好看的图形会是文章很大的加分项。 为了便于使用&#xff0c;本系列文章介绍的所有绘图都已收录到了 sciRplot 项目中&#xff0c;获取方式&#xff1a; R 语言科研绘图模板 --- sciRplothttps://mp.…...

什么是VR全景技术

VR全景技术&#xff0c;全称为虚拟现实全景技术&#xff0c;是通过计算机图像模拟生成三维空间中的虚拟世界&#xff0c;使用户能够在该虚拟世界中进行全方位、无死角的观察和交互的技术。VR全景技术模拟人在真实空间中的视觉体验&#xff0c;结合图文、3D、音视频等多媒体元素…...