当前位置: 首页 > news >正文

机器学习--循环神经网路(RNN)2

在这篇文章中,我们介绍一下其他的RNN。

一.深层RNN

循环神经网络的架构是可以任意设计的,之前提到的 RNN 只有一个隐藏层,但 RNN 也可以是深层的。比如把 xt 丢进去之后,它可以通过一个隐藏层,再通过第二个隐藏层,以此类推 (通过很多的隐藏层) 才得到最后的输出。
每一个隐藏层的输出都会被存在记忆元里面,在下一个时间点的时候,每一个隐藏层会把前一个时间点存的值再读出来,以此类推最后得到输出,这个过程会一直持续下去。
在这里插入图片描述

二. Elman 网络 &Jordan 网络

循环神经网络会有不同的变形,如下图所示,刚才讲的是简单循环网络(Simple Recurrent Network,SRN),即把隐藏层的值存起来,在下一个时间点在读出来。
Jordan 网络存的是整个网络输出的值,它把输出值在下一个时间点在读进来,把输出存到记忆元里。Elman 网络(简单循环网络也称为 Elman 网络)没有目标,很难控制说它能学到什么隐藏层信息(学到什么放到记忆元里),但是 Jordan 网络是有目标,比较很清楚记忆元存储的东西。
在这里插入图片描述

三. 双向循环神经网络

循环神经网络还可以是双向
刚才 RNN 输入一个句子,它就是从句首一直读到句尾。如下图所示,假设句子里的每一个单词用 xt 表示,其是先读 xt,再读 xt+1、xt+2。
在这里插入图片描述

但其读取方向也可以是反过来的,它可以先读 xt+2,再读 xt+1、xt。我们可以同时训练一个正向的循环神经网络,又可以训练一个逆向的循环神经网络,然后把这两个循环神经网络的隐藏层拿出来,都接给一个输出层得到最后的 yt。所以把正向的网络在输入 xt 的时候跟逆向的网络在输入 xt 时,都丢到输出层产生 yt,产生 yt+1, yt+2,以此类推。

双向循环神经网络(Bidirectional Recurrent Neural Network,Bi-RNN)的好处是,神经元产生输出的时候,它看的范围是比较广的。
如果只有正向的网络,再产生 yt、yt+1 的时候,神经元只看过 x1 到xt+1的输入。但双向循环神经网络产生yt+1的时候,网络不只是看过x1,到xt+1所有的输入,它也看了从句尾到xt+1的输入。网络就等于整个输入的序列。
假设考虑的是槽填充,网络就等于看了整个句子后,才决定每一个单词的槽,这样会比看句子的一半还要得到更好的性能

四、长短期记忆网络

最常用的记忆元是长短期记忆网络(Long Short-Term Memory network,LSTM),长时间
的短期记忆(之前的循环神经网络,它的记忆元在每一个时间点都会被洗掉,只要有新的输入进来,每一个时间点都会把记忆元洗掉,所以的短期是非常短的,但如果是长时间的短期记忆元,它记得会比较久一点,只要遗忘门不要决定要忘记,它的值就会被存起来)。
在这里插入图片描述

LSTM 是比较复杂的。LSTM 有三个门(gate),当外界某个神经元的输出想要被写到记忆元里面的时候,必须通过一个输入门(input gate),输入门要被打开的时候,才能把值写到记忆元里面。如果把这个关起来的话,就没有办法把值写进去。
输入门的开关是神经网络自己学的,其可以自己学什么时候要把输入门打开,什么时候要把输入门关起来。

输出的地方也有一个输出门(output gate),输出门会决定外界其他的神经元能否从这个记忆元里面把值读出来。把输出门关闭的时候是没有办法把值读出来,输出门打开的时候才可以把值读出来。跟输入门一样,输出门什么时候打开什么时候关闭,网络是自己学到的。

第三个门称为遗忘门(forget gate),遗忘门决定什么时候记忆元要把过去记得的东西忘掉。这个遗忘门什么时候会把存在记忆元的值忘掉,什么时候会把存在记忆元里面的值继续保留下来,这也是网络自己学到的。

整个 LSTM 可以看成有 4 个输入、1 个输出。在这 4 个输入中,一个是想要被存在记忆元的值,但不一定能存进去,还有操控输入门的信号、操控输出门的信号、操控遗忘门的信号,有着四个输入但它只会得到一个输出。

记忆元的对应计算公式:
在这里插入图片描述
如下图所示,下面这个是外界传入单元的输入,还有输入门、遗忘门和输出门。
假设要被存到单元的输入叫做 z,操控输入门的信号为 zi,操控遗忘门的信号为 zf,操控输出门为 zo,综合这些东西会得到一个输出记为 a。
假设单元里面有这四个输入之前,它里面已经存了值 c。输出 a 会长什么样子呢,把 z 通过激活函数得到 g(z),zi 通过另外一个激活函数得到 f(zi) (激活函数通常会选择 sigmoid 函数),因为其值介在0到1之间的(sigmoid函数不清楚的可以去看之前的文章),这个0到1之间的值代表了这个门被打开的程度。(如果 f 的输出是1,表示为被打开的状态,反之代表这个门是关起来的)。
在这里插入图片描述
把 g(z) 乘以 f(zi) 得到 g(z)f(zi),对于遗忘门的 zf,也通过 sigmoid 的函数得到f(zf)
接下来把存到记忆元里面的值 c 乘以 f(zf) 得到 c f(zf),加起来 c′= g(z)f(zi)+cf(zf),那么 c′ 就是重新存到记忆元里面的值。所以根据目前的运算,这个 f(zi) 控制这个 g(z)。
假设输入 f(zi)=0,那 g(z)f(zi) 就等于 0,就相当于没有输入,如果 f(zi) 等于 1 就等于是把 g(z) 当做输入。
那这个 f(zf ) 决定是否要把存在记忆元的值洗掉,假设 f(zf ) = 1,遗忘门开启的时候,这时候 c 会直接通过,把之前的值还会记得。
如果 f(zf) = 0(遗忘门关闭的时候) cf(zf ) 等于 0。
然后把这个两个值加起来 (c′= g(z)f(zi) + cf(zf)) 写到记忆元里面得到c′。这个遗忘门的开关是跟直觉是相反的,遗忘门打开的时候代表的是记得,关闭的时候代表的是遗忘。
那这个 c′ 通过 h(c′),将 h(c′) 乘以 f(zo) 得到 a = f(c′f(zo))。
输出门受 f(zo) 所操控,f(zo) 等于 1 的话,就说明 h(c′) 能通过,f(zo) 等于 0 的话,说明记忆元里面存在的值没有办法通过输出门被读取出来。

在下一篇文章中我们再来详细探讨LSTM的原理。

相关文章:

机器学习--循环神经网路(RNN)2

在这篇文章中,我们介绍一下其他的RNN。 一.深层RNN 循环神经网络的架构是可以任意设计的,之前提到的 RNN 只有一个隐藏层,但 RNN 也可以是深层的。比如把 xt 丢进去之后,它可以通过一个隐藏层,再通过第二个隐藏层&am…...

sheng的学习笔记-AI-多分类学习:ECOC,softmax

目录:sheng的学习笔记-AI目录-CSDN博客 基本术语: 若我们欲预测的是离散值,例如“好瓜”“坏瓜”,此类学习任务称为“分类”(classification); 若欲预测的是连续值,例如西瓜成熟度0.95、0.37,…...

ChatGPT Plus 支付出现「您的银行卡被拒绝/your card has been declined」怎么办?

ChatGPT Plus 支付出现「您的银行卡被拒绝/your card has been declined」怎么办? 在订阅 ChatGPT Plus 或者 OpenAI API 时,有时候会出现已下报错 : Your card has been declined. 您的银行卡被拒绝 出现这种错误,有以下几个解…...

typescript学习(更新中)

目录 开发环境搭建类型如何声明有哪些类型编译配置文件 开发环境搭建 npm i -g typescripttsc检查是否安装成功 类型如何声明 // 先声明再赋值 let a: number a 1// 直接赋值 let b 1function sum(a: number, b: number): number {return a b } console.log(sum(1, 2))有…...

T2 小美的平衡矩阵(25分) - 美团编程题 题解

考试平台: 牛客网 题目类型: 30道单选题(60分) 2 道编程题 (15分 25分) 考试时间: 2024-03-09 (两小时) 题目描述 小美拿到了一个n*n的矩阵,其中每个元素是…...

13:大数据与Hadoop|分布式文件系统|分布式Hadoop集群

大数据与Hadoop|分布式文件系统|分布式Hadoop集群 Hadoop部署Hadoop HDFS分布式文件系统HDFS部署步骤一:环境准备HDFS配置文件 查官方手册配置Hadoop集群 日志与排错 mapreduce 分布式离线计算框架YARN集群资源管理系统步骤一:安装…...

前端知识点、技巧、webpack、性能优化(持续更新~)

1、 请求太多 页面加载慢 (webpack性能优化) 可以把 图片转换成 base64 放在src里面 减少服务器请求 但是图片会稍微大一点点 以上的方法不需要一个一个自己转化 可以在webpack 进行 性能优化 (官网有详细描述)...

红队专题-开源漏扫-巡风xunfeng源码剖析与应用

开源漏扫-巡风xunfeng 介绍主体两部分:网络资产识别引擎,漏洞检测引擎。代码赏析插件编写JSON标示符Python脚本此外系统内嵌了辅助验证功能文件结构功能 模块添加IP三. 进行扫描在这里插入图片描述 ![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/de587a6f6f694…...

统计接口调用耗时情况设计思路(大厂面试题)

gateway统计接口调用耗时情况设计思路(大厂面试题) 详情视频可以去看尚硅谷2024周阳老师的springCloud P86 知识出处自定义全局过滤器官网https://docs.spring.io/spring-cloud-gateway/docs/current/reference/html/#gateway-combined-global-filter-…...

Elasticsearch:什么是 DevOps?

DevOps 定义 DevOps 是一种现代软件开发方法,它将公司软件开发 (Dev) 和 IT 运营 (Ops) 团队的工作结合起来并实现自动化。 DevOps 提倡这样一种理念:这些传统上独立的团队在协作方面比在孤岛中更有效。 理想情况下,DevOps 团队共同努力改进…...

C语言基础练习——Day03

目录 选择题 编程题 记负均正 旋转数组的最小数字 选择题 1、已知函数的原型是:int fun(char b[10], int *a);,设定义:char c[10];int d;,正确的调用语句是 A fun(c,&d);B fun(c,d);C fun(&c,&d);D fun(&c,d); 答…...

膜厚测量仪在半导体应用中及其重要

随着科技的不断发展,半导体行业已成为当今世界的核心产业之一。在这个领域中,半导体膜厚测量仪作为关键设备,其精度和可靠性对于产品质量和生产效率具有至关重要的作用。本文将详细介绍半导体膜厚测量仪的工作原理、应用领域以及其在半导体制…...

【前端】-初始前端以及html的学习

💖作者:小树苗渴望变成参天大树🎈 🎉作者宣言:认真写好每一篇博客💤 🎊作者gitee:gitee✨ 💞作者专栏:C语言,数据结构初阶,Linux,C 动态规划算法🎄 如 果 你 …...

uni-app navigateTo路由传参传递对象

传递参数 先通过JSON.stringify将对象转成字符串 toNextPage(obj) {uni.navigateTo({url:/pages/nextpage/index?obj${JSON.stringify(obj)}}); },接收参数 再通过JSON.parse将传递过来的字符串转成对象 onLoad(options) {this.obj JSON.parse(options.obj) }...

99 centos 7 服务器上面 增加了 2181 的防火墙配置, 但是客户端连接不上

呵呵 最近部署 zookeeper 的时候出现这样的一个问题 centos 7 服务器上面 增加了 2181 的防火墙配置, 但是客户端连接不上 # 但是再 另外的一个虚拟机环境, ubuntu 16 的环境, docker 启动 2181 的服务, 然后 安装 firewalld, 配置 开放 2181 的 tcp 服务, 客户端能够正常连接…...

云计算科学与工程实践指南--章节引言收集

云计算科学与工程实践指南–章节引言收集 //本文收集 【云计算科学与工程实践指南】 书中每一章节的引言。 我已厌倦了在一本书中阅读云的定义。难道你不失望吗?你正在阅读一个很好的故事,突然间作者必须停下来介绍云。谁在乎云是什么? 通…...

探索Web中的颜色选择:不同取色方法的实现

在Web开发中,提供用户选择颜色的功能是很常见的需求。无论是为了个性化UI主题,还是为了图像编辑工具,一个直观且易用的取色器都是必不可少的。本文将介绍几种在Web应用中实现取色功能的方法,从简单的HTML输入到利用现代API的高级技…...

突破编程_C++_设计模式(策略模式)

1 策略模式的概念 策略模式(Strategy Pattern)是 C 中常用的一种行为设计模式,它能在运行时改变对象的行为。在策略模式中,一个类的行为或其算法可以在运行时更改。这种类型的设计模式属于行为模式。 在策略模式中,需…...

【uniapp】uniapp小程序中实现拍照同时打开闪光灯的功能,拍照闪光灯实现

一、需求前提 特殊场景中,需要拍照的同时打开闪光灯,(例如黑暗场景下的设备维护巡检功能)。 起初我是用的uviewui中的u-upload组件自带的拍照功能,但是这个不支持拍照时打开闪光灯,也不支持从通知栏中打开…...

在python model train里如何驯服野生log?

关键词:python 、epoch、loss、log 🤖: 记录模型的训练过程的步骤如下: 导入logging模块。配置日志记录器,设置日志文件名、日志级别、日志格式等。在每个epoch结束时,使用logging模块记录性能指标、损失值、准确率等信…...

Linux应用开发之网络套接字编程(实例篇)

服务端与客户端单连接 服务端代码 #include <sys/socket.h> #include <sys/types.h> #include <netinet/in.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <arpa/inet.h> #include <pthread.h> …...

Lombok 的 @Data 注解失效,未生成 getter/setter 方法引发的HTTP 406 错误

HTTP 状态码 406 (Not Acceptable) 和 500 (Internal Server Error) 是两类完全不同的错误&#xff0c;它们的含义、原因和解决方法都有显著区别。以下是详细对比&#xff1a; 1. HTTP 406 (Not Acceptable) 含义&#xff1a; 客户端请求的内容类型与服务器支持的内容类型不匹…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)

HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...

[10-3]软件I2C读写MPU6050 江协科技学习笔记(16个知识点)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16...

【android bluetooth 框架分析 04】【bt-framework 层详解 1】【BluetoothProperties介绍】

1. BluetoothProperties介绍 libsysprop/srcs/android/sysprop/BluetoothProperties.sysprop BluetoothProperties.sysprop 是 Android AOSP 中的一种 系统属性定义文件&#xff08;System Property Definition File&#xff09;&#xff0c;用于声明和管理 Bluetooth 模块相…...

【Java_EE】Spring MVC

目录 Spring Web MVC ​编辑注解 RestController RequestMapping RequestParam RequestParam RequestBody PathVariable RequestPart 参数传递 注意事项 ​编辑参数重命名 RequestParam ​编辑​编辑传递集合 RequestParam 传递JSON数据 ​编辑RequestBody ​…...

聊一聊接口测试的意义有哪些?

目录 一、隔离性 & 早期测试 二、保障系统集成质量 三、验证业务逻辑的核心层 四、提升测试效率与覆盖度 五、系统稳定性的守护者 六、驱动团队协作与契约管理 七、性能与扩展性的前置评估 八、持续交付的核心支撑 接口测试的意义可以从四个维度展开&#xff0c;首…...

【HarmonyOS 5 开发速记】如何获取用户信息(头像/昵称/手机号)

1.获取 authorizationCode&#xff1a; 2.利用 authorizationCode 获取 accessToken&#xff1a;文档中心 3.获取手机&#xff1a;文档中心 4.获取昵称头像&#xff1a;文档中心 首先创建 request 若要获取手机号&#xff0c;scope必填 phone&#xff0c;permissions 必填 …...

精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南

精益数据分析&#xff08;97/126&#xff09;&#xff1a;邮件营销与用户参与度的关键指标优化指南 在数字化营销时代&#xff0c;邮件列表效度、用户参与度和网站性能等指标往往决定着创业公司的增长成败。今天&#xff0c;我们将深入解析邮件打开率、网站可用性、页面参与时…...

OPenCV CUDA模块图像处理-----对图像执行 均值漂移滤波(Mean Shift Filtering)函数meanShiftFiltering()

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 算法描述 在 GPU 上对图像执行 均值漂移滤波&#xff08;Mean Shift Filtering&#xff09;&#xff0c;用于图像分割或平滑处理。 该函数将输入图像中的…...