当前位置: 首页 > news >正文

格密码学习笔记(二):连续极小、覆盖半径和平滑参数

文章目录

  • 最短距离和连续极小值
  • 距离函数和覆盖半径
  • 格的平滑参数
  • 致谢

最短距离和连续极小值

除了行列式,格的另一个基本量是格上最短非零向量的长度,即格中最短距离,其定义为
λ1=min⁡x,y∈L,x≠y∥x−y∥=min⁡z∈L,z≠0∥z∥.\begin{aligned} \lambda_1 &= \min_{\bm{x,y} \in \mathcal{L}, \bm{x} \neq \bm{y}} \| \bm{x} - \bm{y} \| \\ &= \min_{\bm{z} \in \mathcal{L}, \bm{z} \neq \bm{0}} \| \bm{z} \|. \end{aligned} λ1=x,yL,x=yminxy=zL,z=0minz∥.

在这里插入图片描述

如上图所示,两两格点构成的向量都可以通过平移得到起始点为原点的向量,通过找到距离原点最近的格点即可计算出格中最短距离。格中最短距离也称为第一连续极小,记为λ1\lambda_1λ1

同理可定义第二至第nnn连续极小λ2,…,λn\lambda_2, \dots, \lambda_nλ2,,λn

在二维格上,可以用多项式时间算法求解出λ1\lambda_1λ1,但在多维格上求解λ1\lambda_1λ1则十分困难。注意,给定一组格基,最短向量不一定是格基之一。

定义1 在格L\mathcal{L}L中,iii连续极小值(i=1,…,ni=1,\dots, ni=1,,nλi=min⁡{r:dimspan(B(r)∩L)≥i}\lambda_i = \min \{ r : \mathrm{dim} ~ \mathrm{span}(\mathcal{B}(r) \cap \mathcal{L}) \geq i \}λi=min{r:dim span(B(r)L)i}

在定义1中,B(r)\mathcal{B}(r)B(r)表示半径为rrr的超球体(Ball),该超球体与格L\mathcal{L}L交集产生的向量张成(span\mathrm{span}span)的空间的维度(dim\mathrm{dim}dim)为iii。换而言之,第iii连续极小值即包含至少iii个线性无关格向量的最小球的半径。

把球的中心放在原点,若球中有非零格向量,那么球中不止一个格向量。以上图为例,红色区域包含了一个非零格向量以及它的逆向量,但这二者在同一条直线上,仅张成一维空间,该超球体的半径是λ1\lambda_1λ1。而以下图为例,一个更大的超球体包含了4个非零格向量,可以张成二维空间,该超球体的半径是λ2\lambda_2λ2

在这里插入图片描述

在整数格Zn\mathbb{Z}^nZn中,有λ1=λ2=⋯=λn\lambda_1 = \lambda_2 = \cdots = \lambda_nλ1=λ2==λn。一般而言,λ1≤λ2⋯≤λn\lambda_1 \leq \lambda_2 \cdots \leq \lambda_nλ1λ2λn

距离函数和覆盖半径

对任意点t∈Rn\bm{t} \in \mathbb{R}^ntRn,记距离函数μ(t,L)\mu(\bm{t}, \mathcal{L})μ(t,L)返回t\bm{t}t到最近格点的距离,即μ(x,L)=min⁡x∈L∥t−x∥\mu(\bm{x}, \mathcal{L}) = \min_{\bm{x} \in \mathcal{L}} \| \bm{t} - \bm{x} \|μ(x,L)=minxLtx

通过移动t\bm{t}t可以找到μ\muμ的最大值,称为覆盖半径,即μ(L)=max⁡t∈span(L)μ(t,L)\mu(\mathcal{L}) = \max_{\bm{t} \in \mathrm{span}(\mathcal{L})} \mu(\bm{t}, \mathcal{L})μ(L)=maxtspan(L)μ(t,L)。以下图为例,t\bm{t}t从①移动至②再移动至③,此时无论t\bm{t}t再怎么移动都会减小μ\muμ的值,故μ\muμ在步骤③时达到最大。

在这里插入图片描述

以下图为例,将所有格点作为球心,不断增大球的半径rrr,当半径rrr超过12λ1\frac{1}{2} \lambda_121λ1时这些球开始互相覆盖,而当空间中所有点都被这些球覆盖时rrr刚好等于μ\muμ的最大值,名称“覆盖半径”由此而来。想象一下,在下图的第三张子图里,若再移动蓝色点t\bm{t}t均会落在球的内部从而使μ\muμ变小。

在这里插入图片描述

格的平滑参数

假设噪声γ\bm{\gamma}γ随机采样自均匀分布U([0,r]n)\mathrm{U}([0, r]^n)U([0,r]n),记格点为x∈L\bm{x} \in \mathcal{L}xL,为使γ+x\bm{\gamma} + \bm{x}γ+x的分布看起来与U(Rn)\mathrm{U}(\mathbb{R}^n)U(Rn)无异,要使rrr足够大。以上图为例,γ+x\bm{\gamma} + \bm{x}γ+x的出现频数用红色深浅表示,当rrr太小时有些地方是空白色,随着rrr的增大有些区域红色的深浅程度不一,当rrr无穷大时所有区域颜色一样。

rrr是无穷大时是最理想的状态。事实上,存在一个有限的r^\hat{r}r^值可使γ+x\bm{\gamma} + \bm{x}γ+x趋近于完全均匀分布,有max⁡μ≤∥r^∥≤log⁡(n)⋅nλn\max \mu \leq \| \hat{r} \| \leq \log(n) \cdot \sqrt{n} \lambda_nmaxμr^log(n)nλn

注:下面笔记属于个人猜测,高斯噪声这块公开课讲得比较模糊,强烈建议查阅原始论文。

球的半径要取得很大是因为它的边界十分明显。为解决该问题,可以使球心到边界逐渐平滑,即采用球状高斯分布进行平滑,从而得到高斯噪声。以下图为例,高斯平滑缩小了rrr值。对半径对应向量的每个分量vi\bm{v}_ivi,应使得∥vi∥≈ηϵ≤log⁡(n)λn\| \bm{v}_i \| \approx \eta_\epsilon \leq \log(n) \lambda_nviηϵlog(n)λn,仅略大于λn\lambda_nλn,此处ηϵ\eta_\epsilonηϵ被称为平滑参数。一般而言,ηϵ\eta_\epsilonηϵ由一个错误参数ϵ\epsilonϵ决定,ϵ\epsilonϵ表示当前噪声分布和均匀噪声分布之间的差异。

在这里插入图片描述

致谢

  • Simons格密码公开课官网

Mathematics of Lattices - Simons Institute for the Theory of Computing

  • 哔哩哔哩中英双语视频(字幕组:重庆大学大数据与软件学院 后量子密码研究小组)

【中英字幕】Simons格密码讲座第1讲:格的数学定义_哔哩哔哩_bilibili

  • 其它格密码讲解课程和博文

格密码入门课程_哔哩哔哩_bilibili

格密码的基础概念_唠嗑!的博客-CSDN博客_格密码

格(Lattice)基础(一)_Amire0x的博客-CSDN博客_两组格基生成同一个格的充要条件

相关文章:

格密码学习笔记(二):连续极小、覆盖半径和平滑参数

文章目录最短距离和连续极小值距离函数和覆盖半径格的平滑参数致谢最短距离和连续极小值 除了行列式,格的另一个基本量是格上最短非零向量的长度,即格中最短距离,其定义为 λ1min⁡x,y∈L,x≠y∥x−y∥min⁡z∈L,z≠0∥z∥.\begin{aligned} …...

ios 通过搜索设备MAC地址绑定

最近做了一个物联网项目,涉及到了设备绑定配网这块,需要了解一下iOS BLE与设备绑定的相关知识点,第一次接触蓝牙相关的项目,所以开始熟悉蓝牙的相关信息。没有去深入研究BabyTooth库,只是感觉CoreBluetooth已经让我更好的理解整个流程这个物联网项目的设备绑定流程是…...

Python实现人脸识别,进行视频跟踪打码,羞羞的画面统统打上马赛克

哈喽兄弟们,我是轻松~ 今天我们来实现用Python自动对视频打马赛克前言准备工作代码实战效果展示最后前言 事情是这样的,昨天去表弟家,用了下他的电脑,不小心点到了他硬盘里隐藏的秘密,本来我只需要用几分钟电脑的&…...

vcf bed起始位置是0还是1

VCF 起始位置为1, POS - position: The reference position, with the 1st base having position 1. Positions are sorted numerically, in increasing order, within each reference sequence CHROM. It is permitted to have multiple records with the same POS. Telome…...

Hexo+live2d | 如何把live2d老婆放进自己的博客

参考:Hexo添加Live2D看板娘最新教程live2d-widgetlive2d-widget-models网页/博客Hexo添加live2d游戏角色看板娘,简易添加,碧蓝航线等live2d新型游戏角色模型(moc3)live2d-moc3jsdelivr方法1可以直接去看参考文章的第一部分的第一篇…...

【微信小程序】-- 页面导航 -- 导航传参(二十四)

💌 所属专栏:【微信小程序开发教程】 😀 作  者:我是夜阑的狗🐶 🚀 个人简介:一个正在努力学技术的CV工程师,专注基础和实战分享 ,欢迎咨询! &…...

Pytorch学习笔记#2: 搭建神经网络训练MNIST手写数字数据集

学习自https://pytorch.org/tutorials/beginner/basics/quickstart_tutorial.html 导入并预处理数据集 pytorch中数据导入和预处理主要用torch.utils.data.DataLoader 和 torch.utils.data.Dataset Dataset 存储样本及其相应的标签,DataLoader在数据上生成一个可迭…...

C语言 猜名次、猜凶手、杨辉三角题目详解

猜名次题目:5位运动员参加了10米台跳水比赛,有人让他们预测比赛结果:A选手说:B第二,我第三;B选手说:我第二,E第四;C选手说:我第一,D第二&#xff…...

蚁群算法负荷预测

%% 清空环境变量 clc clear close all format compact %% 网络结构建立 %% 清空环境变量 clc clear close all format compact %% 网络结构建立 %读取数据 dataxlsread(天气_电量_数据.xlsx,C12:J70);%前7列为每个时刻的发电量 最后列为天气 for i1:58 input(i,:)[data…...

ubuntu添加系统服务实现开机root权限运行

需求 开机自动运行程序(或脚本),需要以root权限运行但不输入密码,也不能将密码写入文件。 环境 Ubuntu 20.04 解决方案 添加系统服务,然后通过systemctl控制。 操作步骤 假设目标程序为/home/xxx/test 1、创建service配置文件 [Unit…...

【阅读笔记】你不知道的Javascript--类与类型委托3

目录类一些常见原理混入行为委托委托理论类与对象更妙的设计与语法类型冷门关键词typeof 防范机制值原生函数访问内部属性类 一些常见原理 在继承或者实例化时,JavaScript 的对象机制并不会自动执行复制行为; 多态:JS 中的多态&#xff0c…...

文件服务设计

一、需求背景 文件的上传、下载功能是软件系统常见的功能,包括上传文件、下载文件、查看文件等。例如:电商系统中需要上传商品的图片、广告视频,办公系统中上传附件,社交类系统中上传用户头像等等。文件上传下载大致流程为&#…...

【批处理脚本】-1.22-字符串界定符号 ““

"><--点击返回「批处理BAT从入门到精通」总目录--> 共3页精讲(列举了所有字符串界定符号 ""的用法,图文并茂,通俗易懂) 在从事“嵌入式软件开发”和“Autosar工具开发软件”过程中,经常会在其集成开发环境IDE(CodeWarrior,S32K DS,Davinci,…...

【Flutter·学习实践·UI篇】基础且重要的UI知识

前言 参考学习官网&#xff1a;《Flutter实战第二版》 学习前先记住&#xff1a;Flutter 中万物皆为Widget&#xff0c;心中默念3次以上铭记于心。 这一点和开发语言Dart的变量一切皆是对象的概念&#xff0c;相互对应。 Widget 在前面的介绍中&#xff0c;我们知道在Flutt…...

【OpenCV】车牌自动识别算法的设计与实现

写目录一. &#x1f981; 设计任务说明1.1 主要设计内容1.1.1 设计并实现车牌自动识别算法&#xff0c;基本功能要求1.1.2 参考资料1.1.3 参考界面布局1.2 开发该系统软件环境及使用的技术说明1.3 开发计划二. &#x1f981; 系统设计2.1 功能分析2.1.1 车辆图像获取2.1.2 车牌…...

SpringBoot发送邮件

目录1. 获取授权码2. jar包引入3. 配置application4. 代码实现1. 获取授权码 以126邮箱为例&#xff0c;点开设置&#xff0c;选择POP3/SMTP/IMAP 开启POP3/SMTP服务&#xff0c;新增授权密码 扫码二维码&#xff0c;发送要求的短信内容到指定的号码即可&#xff0c;然后会返回…...

BigInteger类和BigDecimal类的简单介绍

文章目录&#x1f4d6;前言&#xff1a;&#x1f380;BigInteger类和BigDecimal类的由来&#x1f380;BigDecimal类的优点&#x1f380;BigDecimal类容易引发的错误&#x1f3c5;处理方法&#x1f4d6;前言&#xff1a; 本篇博客主要介绍BigInteger类和BigDecimal类的用途及常…...

mysql五种索引类型---实操版本

背景 最近学习了Mysql的索引&#xff0c;索引对于Mysql的高效运行是非常重要的&#xff0c;正确的使用索引可以大大的提高MySql的检索速度。通过索引可以大大的提升查询的速度。不过也会带来一些问题。比如会降低更新表的速度&#xff08;因为不但要把保存数据还要保存一下索引…...

【微信小程序】-- 页面导航 -- 编程式导航(二十三)

&#x1f48c; 所属专栏&#xff1a;【微信小程序开发教程】 &#x1f600; 作  者&#xff1a;我是夜阑的狗&#x1f436; &#x1f680; 个人简介&#xff1a;一个正在努力学技术的CV工程师&#xff0c;专注基础和实战分享 &#xff0c;欢迎咨询&#xff01; &…...

路由追踪工具 traceroute 使用技巧

路由追踪工具 traceroute 使用技巧路由追踪工作原理路由追踪实例1. 如何运行 traceroute2. 禁用 IP 地址和主机名映射3. 配置回复等待时间4. 配置每一跳的查询次数5. 配置 TTL 值我想知道一个数据包从出发地到目的地所遵循的路由&#xff0c;即所有转发实体&#xff08;中间的路…...

Python爬虫实战:研究MechanicalSoup库相关技术

一、MechanicalSoup 库概述 1.1 库简介 MechanicalSoup 是一个 Python 库,专为自动化交互网站而设计。它结合了 requests 的 HTTP 请求能力和 BeautifulSoup 的 HTML 解析能力,提供了直观的 API,让我们可以像人类用户一样浏览网页、填写表单和提交请求。 1.2 主要功能特点…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)

HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...

DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径

目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...

IGP(Interior Gateway Protocol,内部网关协议)

IGP&#xff08;Interior Gateway Protocol&#xff0c;内部网关协议&#xff09; 是一种用于在一个自治系统&#xff08;AS&#xff09;内部传递路由信息的路由协议&#xff0c;主要用于在一个组织或机构的内部网络中决定数据包的最佳路径。与用于自治系统之间通信的 EGP&…...

(二)TensorRT-LLM | 模型导出(v0.20.0rc3)

0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述&#xff0c;后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作&#xff0c;其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...

定时器任务——若依源码分析

分析util包下面的工具类schedule utils&#xff1a; ScheduleUtils 是若依中用于与 Quartz 框架交互的工具类&#xff0c;封装了定时任务的 创建、更新、暂停、删除等核心逻辑。 createScheduleJob createScheduleJob 用于将任务注册到 Quartz&#xff0c;先构建任务的 JobD…...

12.找到字符串中所有字母异位词

&#x1f9e0; 题目解析 题目描述&#xff1a; 给定两个字符串 s 和 p&#xff0c;找出 s 中所有 p 的字母异位词的起始索引。 返回的答案以数组形式表示。 字母异位词定义&#xff1a; 若两个字符串包含的字符种类和出现次数完全相同&#xff0c;顺序无所谓&#xff0c;则互为…...

06 Deep learning神经网络编程基础 激活函数 --吴恩达

深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...

基于matlab策略迭代和值迭代法的动态规划

经典的基于策略迭代和值迭代法的动态规划matlab代码&#xff0c;实现机器人的最优运输 Dynamic-Programming-master/Environment.pdf , 104724 Dynamic-Programming-master/README.md , 506 Dynamic-Programming-master/generalizedPolicyIteration.m , 1970 Dynamic-Programm…...

【Go语言基础【13】】函数、闭包、方法

文章目录 零、概述一、函数基础1、函数基础概念2、参数传递机制3、返回值特性3.1. 多返回值3.2. 命名返回值3.3. 错误处理 二、函数类型与高阶函数1. 函数类型定义2. 高阶函数&#xff08;函数作为参数、返回值&#xff09; 三、匿名函数与闭包1. 匿名函数&#xff08;Lambda函…...