vite项目修改node_modules
问题详情
在使用某个依赖的时候遇到了bug,提交issue后不想一直等待到作者更新版本,所以寻求临时自己解决
问题解决
在node_modules里找到需要修改的依赖,修改想要修改的代码

修改后记得保存
然后在node_modules里找到.vite文件夹,将其全部删除

再npm run dev启动,刷新页面看看修改是否生效

Q&A
- 为啥要删除.vite文件夹呢?
我猜的,因为观察页面的请求,第三方依赖都是来自这个目录下的

并且我试了,只修改不删除,修改不会生效
更新
如果使用的是pnpm包管理工具,可以直接使用命令
pnpm patch 带版本的依赖名称
然后会返回一串地址,进入该地址,使用vscode打开,如果是vscode可以直接ctrl+点击

打开后直接对代码进行修改

修改完成后保存,使用上面返回的第二段指令提交修改

然后启动项目,修改即可生效,这种修改方式可以方便后续其他人也能编译得到修改后的内容
参考:https://zhuanlan.zhihu.com/p/656735158
相关文章:
vite项目修改node_modules
问题详情 在使用某个依赖的时候遇到了bug,提交issue后不想一直等待到作者更新版本,所以寻求临时自己解决 问题解决 在node_modules里找到需要修改的依赖,修改想要修改的代码 修改后记得保存 然后在node_modules里找到.vite文件夹&#x…...
NLP神器Transformers入门简单概述
在这篇博客中,我们将深入探索 🤗 Transformers —— 一个为 PyTorch、TensorFlow 和 JAX 设计的先进机器学习库。🤗 Transformers 提供了易于使用的 API 和工具,使得下载和训练前沿的预训练模型变得轻而易举。利用预训练模型不仅能减少计算成本和碳足迹,还能节省从头训练…...
微信小程序-wxml语法
介绍 WXML(WeiXin Markup Language)是框架设计的一套标签语言,可以进行页面布局,声明事件,数据绑定,条件判断。 语法 数据绑定 <view> {{message}} </view>// page.js Page({data: { // 状态…...
网络层转发分组的过程
分组转发都是基于目的主机所在网络的,这事因为互联网上的网络数远小于主机数,这样可以极大的压缩转发表的大小。当分组到达路由器后,路由器根据目的IP地址的网络地址前缀查找转发表,确定下一跳应当到哪个有路由器。因此࿰…...
计算两帧雷达数据之间的变换矩阵
文章目录 package.xmlCMakeLists.txtpoint_cloud_registration.cc运行结果 package.xml <?xml version"1.0"?> <package format"2"><name>point_cloud_registration</name><version>0.0.0</version><descriptio…...
2. gin中间件注意事项、路由拆分与注册技巧
文章目录 一、中间件二、Gin路由简介1、普通路由2、路由组 三、路由拆分与注册1、基本的路由注册2、路由拆分成单独文件或包3、路由拆分成多个文件4、路由拆分到不同的APP 一、中间件 在日常工作中,经常会有一些计算接口耗时和限流的操作,如果每写一个接…...
R语言复现:如何利用logistic逐步回归进行影响因素分析?
Logistic回归在医学科研、特别是观察性研究领域,无论是现况调查、病例对照研究、还是队列研究中都是大家经常用到的统计方法,而在影响因素研究筛选自变量时,大家习惯性用的比较多的还是先单后多,P<0.05纳入多因素研究&…...
【MySQL使用】show processlist 命令详解
show processlist 命令详解 一、命令含义二、命令返回参数三、Command值解释四、State值解释五、参考资料 一、命令含义 对于一个MySQL连接,或者说一个线程,任何时刻都有一个状态,该状态表示了MySQL当前正在做什么。SHOW PROCESSLIST 命令的…...
分类算法(Classification algorithms)
逻辑回归(logical regression): 逻辑回归这个名字听上去好像应该是回归算法的,但其实这个名字只是在历史上取名有点区别,但实际上它是一个完全属于是分类算法的。 我们为什么要学习它呢?在用我们的线性回归时会遇到一…...
深度学习-Softmax 回归 + 损失函数 + 图片分类数据集
Softmax 回归 损失函数 图片分类数据集 1 softmax2 损失函数1均方L1LossHuber Loss 3 图像分类数据集4 softmax回归的从零开始实现 1 softmax Softmax是一个常用于机器学习和深度学习中的激活函数。它通常用于多分类问题,将一个实数向量转换为概率分布。Softmax函…...
分布式锁从0到1落地实现01(mysql/redis/zk)
1 准备数据库表 CREATE TABLE user ( id bigint(20) NOT NULL COMMENT 主键ID, name varchar(30) DEFAULT NULL COMMENT 姓名, age int(11) DEFAULT NULL COMMENT 年龄, email varchar(50) DEFAULT NULL COMMENT 邮箱, PRIMARY KEY (id) ) ENGINEInnoDB DEFAULT CHARSETutf8;I…...
安全运营方案的基本框架和关键要素
一、前言 阐述安全运营方案的目的和重要性。强调安全运营与组织整体战略目标的关联。 二、安全运营原则 确立安全运营的基本原则,如保密性、完整性和可用性。明确安全责任划分,确保各部门和人员履行安全职责。 三、安全风险评估与管理 进行全面的安…...
用C语言执行SQLite3的gcc编译细节
错误信息: /tmp/cc3joSwp.o: In function main: execSqlite.c:(.text0x100): undefined reference to sqlite3_open execSqlite.c:(.text0x16c): undefined reference to sqlite3_exec execSqlite.c:(.text0x174): undefined reference to sqlite3_close execSqlit…...
matlab双目相机标定-需要什么参数、怎么获得
相机标定目的:获得相机内参、外参、畸变系数,摄像头的内参(f,1/dx,1/dy,cx,cy)、畸变参数(k1,k2,k3,p1,p1)和外参(R,t),用于接下来的双目校正和深度图生成从而实现二维到三维的转换。 相机标定方法:opencv 双目相机标定以及立体…...
大型语言模型的智能助手:检索增强生成(RAG)
背景 在人工智能的浪潮中,大型语言模型(LLMs)如GPT系列和LLama系列在自然语言处理(NLP)领域取得了显著成就。它们能够完成复杂的语言任务,如文本摘要、机器翻译、甚至创作诗歌。然而,这些模型在…...
Ubuntu 安装谷歌拼音输入法
一、Fcitx 安装 在Ubuntu 下,谷歌拼音输入法是基于Fcitx输入法的。所以,首先需要安装Fcitx。一般来说,Ubuntu最新版中都默认安装了Fcitx,但是为了确保一下,我们可以在系统终端中运行如下命令: sudo apt ins…...
修改MonkeyDev默认配置适配Xcode15
上一篇文章介绍了升级Xcode15后,适配MonkeyDev的一些操作,具体操作可以查看:Xcode 15 适配 MonkeyDev。 但是每次新建项目都要去修改那些配置,浪费时间和精力,这篇文章主要介绍如何修改MonkeyDev的默认配置࿰…...
deepinlinux打包deb文件完善
最近学习了一篇qt入门文章,做了一个小应用,要给另一台电脑用时发现还需考虑另一台没有qt,要把相关库带过去,后来就学了打包成deb安装包,看起来更专业。 win下搜索qt依赖库的程序是windeployqt,先将应用输出…...
Android studioSDK集成:com.yechaoa.yutilskt
文章目录 1、工具介绍2、集成 1、工具介绍 com.yechaoa.yutilskt是一个Android开发工具库,提供了一些常用的工具类和方法,方便开发者进行Android应用程序的开发。该库包含了以下功能: 网络请求工具类:提供了简化的网络请求方法&…...
openssl3.2 - exp - PEM <==> DER
文章目录 openssl3.2 - exp - PEM <> DER概述笔记加密用的私钥(带口令保护) - PEM > DER加密用的私钥(不带口令保护) - DER > PEM将不带口令的PEM转成带口令的PEM支持口令的算法备注END openssl3.2 - exp - PEM <> DER 概述 想将客户端私钥 服务端公钥 数…...
3.3.1_1 检错编码(奇偶校验码)
从这节课开始,我们会探讨数据链路层的差错控制功能,差错控制功能的主要目标是要发现并且解决一个帧内部的位错误,我们需要使用特殊的编码技术去发现帧内部的位错误,当我们发现位错误之后,通常来说有两种解决方案。第一…...
《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》
在注意力分散、内容高度同质化的时代,情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现,消费者对内容的“有感”程度,正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中࿰…...
【android bluetooth 框架分析 04】【bt-framework 层详解 1】【BluetoothProperties介绍】
1. BluetoothProperties介绍 libsysprop/srcs/android/sysprop/BluetoothProperties.sysprop BluetoothProperties.sysprop 是 Android AOSP 中的一种 系统属性定义文件(System Property Definition File),用于声明和管理 Bluetooth 模块相…...
IoT/HCIP实验-3/LiteOS操作系统内核实验(任务、内存、信号量、CMSIS..)
文章目录 概述HelloWorld 工程C/C配置编译器主配置Makefile脚本烧录器主配置运行结果程序调用栈 任务管理实验实验结果osal 系统适配层osal_task_create 其他实验实验源码内存管理实验互斥锁实验信号量实验 CMISIS接口实验还是得JlINKCMSIS 简介LiteOS->CMSIS任务间消息交互…...
智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制
在数字化浪潮席卷全球的今天,数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具,在大规模数据获取中发挥着关键作用。然而,传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时,常出现数据质…...
docker 部署发现spring.profiles.active 问题
报错: org.springframework.boot.context.config.InvalidConfigDataPropertyException: Property spring.profiles.active imported from location class path resource [application-test.yml] is invalid in a profile specific resource [origin: class path re…...
Redis的发布订阅模式与专业的 MQ(如 Kafka, RabbitMQ)相比,优缺点是什么?适用于哪些场景?
Redis 的发布订阅(Pub/Sub)模式与专业的 MQ(Message Queue)如 Kafka、RabbitMQ 进行比较,核心的权衡点在于:简单与速度 vs. 可靠与功能。 下面我们详细展开对比。 Redis Pub/Sub 的核心特点 它是一个发后…...
让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比
在机器学习的回归分析中,损失函数的选择对模型性能具有决定性影响。均方误差(MSE)作为经典的损失函数,在处理干净数据时表现优异,但在面对包含异常值的噪声数据时,其对大误差的二次惩罚机制往往导致模型参数…...
短视频矩阵系统文案创作功能开发实践,定制化开发
在短视频行业迅猛发展的当下,企业和个人创作者为了扩大影响力、提升传播效果,纷纷采用短视频矩阵运营策略,同时管理多个平台、多个账号的内容发布。然而,频繁的文案创作需求让运营者疲于应对,如何高效产出高质量文案成…...
AirSim/Cosys-AirSim 游戏开发(四)外部固定位置监控相机
这个博客介绍了如何通过 settings.json 文件添加一个无人机外的 固定位置监控相机,因为在使用过程中发现 Airsim 对外部监控相机的描述模糊,而 Cosys-Airsim 在官方文档中没有提供外部监控相机设置,最后在源码示例中找到了,所以感…...
