当前位置: 首页 > news >正文

Leetcode 3077. Maximum Strength of K Disjoint Subarrays

  • Leetcode 3077. Maximum Strength of K Disjoint Subarrays
    • 1. 解题思路
      • 1. 朴素思路
      • 2. 算法优化
    • 2. 代码实现
  • 题目链接:3077. Maximum Strength of K Disjoint Subarrays

1. 解题思路

这道题很惭愧没有搞定,思路上出现了差错,导致一直没能搞定,最后是看了大佬的算法才搞定的,唉,不过确实比较巧妙,因此这里把我们的朴素实现思路和大佬们的思路都在这里整理一下,留个记录。

1. 朴素思路

首先,我拿到这道题目之后的一个朴素的思路就是动态规划,显然,我们就是要将一个长度为n的arr分成k段,然后在每段当中获取最大/最小的subarray的和,然后乘以因子之后求和获取最大值。

因此,我们用一个动态规划即可处理这个问题。

然后,对于中间的每一个subarry,对于如何其中最大最小值的问题,我们用一个累积数组就可以将问题转换为如何求一个array的任意元素之后最大/最小元素的问题,这个是简单的。

因此,我们就可以快速给出代码如下:

class Solution:def maximumStrength(self, nums: List[int], k: int) -> int:n = len(nums)s = list(accumulate(nums, initial=0))factors = [(i+1)*(-1)**(i%2) for i in range(k)]print(s)@lru_cache(None)def dp(idx, r):if r == 0:return 0ans = -math.infif r % 2 == 1:_min = s[idx]sub = -math.inffor i in range(idx+1, n-r+2):sub = max(sub, s[i] - _min)_min = min(_min, s[i])ans = max(ans, factors[r-1] * sub + dp(i, r-1))else:_max = s[idx]sub = math.inffor i in range(idx+1, n-r+2):sub = min(sub, s[i] - _max)_max = max(_max, s[i])ans = max(ans, factors[r-1] * sub + dp(i, r-1))return ansans = dp(0, k)return ans

不过这段代码遇到了超时问题,无法正常通过。

其原因在于虽然动态规划的总的时间复杂度是 O ( N K ) O(NK) O(NK),但是由于内部还有一重循环,导致最坏的情况下时间复杂度变成了 O ( N 2 K ) O(N^2K) O(N2K),这显然就无法通过测试样例了。

2. 算法优化

而大佬的思路则是和我们相反的,我们是考虑如何将整体的array进行分段,大佬的思路则是考察array当中每一个元素的归属,显然,这只有以下几种情况:

  • 哪个subarray都不属于
  • 属于某一个subarray
    • 与前一个元素都属于同一个subarray
    • 是一个新的subarray第一个元素

此时,我们只需要给出两个 k k k维的动态规划向量dp0, dp1,对于某一个元素,他们的任意一维i分别表示:

  • dp0[i]表示当前元素属于第 i i i个subarray时,能够获得的最大strength
  • dp1[i]表示之前所有元素被分为 i i i个subarray时,能够获得的最大strength

此时,我们显然有迭代关系:
d p 0 t ( i ) = α ⋅ n i + m a x ( d p 0 t − 1 ( i ) , d p 1 t ( i − 1 ) ) d p 1 t ( i ) = m a x ( d p 1 t − 1 ( i ) , d p 0 t ( i ) ) \begin{aligned} dp0_{t}(i) &= \alpha \cdot n_i + \mathop{max}(dp0_{t-1}(i), dp1_{t}(i-1)) \\ dp1_{t}(i) &= \mathop{max}(dp1_{t-1}(i), dp0_{t}(i)) \end{aligned} dp0t(i)dp1t(i)=αni+max(dp0t1(i),dp1t(i1))=max(dp1t1(i),dp0t(i))

由此,遍历整个长度为n的array,我们即可从dp1中得到其所有元素被分至 k k k个subarray时能够获得的最大strength。

我们将其翻译为代码语言即可。

2. 代码实现

给出python代码实现如下:

class Solution:def maximumStrength(self, nums: List[int], k: int) -> int:factors = [(k-i)*(-1)**(i%2) for i in range(k)]# dp0 stand for consecutive and dp1 for inconsecutivedp0 = [-math.inf for _ in range(k)]dp1 = [-math.inf for _ in range(k)]for num in nums:# s[i] stand for max result including num in ith subarrays = [-math.inf for _ in range(k)]s[0] = num * factors[0] + max(0, dp0[0])for i in range(1, k):s[i] = num * factors[i] + max(dp0[i], dp1[i-1])for i in range(k):dp1[i] = max(dp1[i], s[i])dp0 = sreturn dp1[-1]

提交代码评测得到:耗时2386ms,占用内存18MB。

相关文章:

Leetcode 3077. Maximum Strength of K Disjoint Subarrays

Leetcode 3077. Maximum Strength of K Disjoint Subarrays 1. 解题思路 1. 朴素思路2. 算法优化 2. 代码实现 题目链接:3077. Maximum Strength of K Disjoint Subarrays 1. 解题思路 这道题很惭愧没有搞定,思路上出现了差错,导致一直没能…...

【JetsonNano】onnxruntime-gpu 环境编译和安装,支持 Python 和 C++ 开发

1. 设备 2. 环境 sudo apt-get install protobuf-compiler libprotoc-devexport PATH/usr/local/cuda/bin:${PATH} export CUDA_PATH/usr/local/cuda export cuDNN_PATH/usr/lib/aarch64-linux-gnu export CMAKE_ARGS"-DONNX_CUSTOM_PROTOC_EXECUTABLE/usr/bin/protoc&qu…...

知名比特币质押协议项目Babylon确认参加Hack.Summit()2024区块链开发者大会

Babylon项目已确认将派遣其项目代表出席2024年在香港数码港举办的Hack.Summit()2024区块链开发者大会。作为比特币生态的领军项目,Babylon积极参与全球区块链领域的交流与合作,此次出席大会将为其提供一个展示项目进展、交流技术与创新思路的重要平台。B…...

如何学习、上手点云算法(三):用VsCode、Visual Studio来debug基于PCL、Open3D的代码

写在前面 本文内容 以PCL 1.14.0,Open3D0.14.1为例,对基于PCL、Open3D开发的代码进行源码debug; 如何学习、上手点云算法系列: 如何学习、上手点云算法(一):点云基础 如何学习、上手点云算法(二):点云处理相…...

【干货】alzet渗透泵操作说明

alzet渗透泵是一款小型、可植入式的胶囊渗透泵产品,此产品由于其独特的渗透原理,深受广大科研人员的喜爱。该泵可适用于小鼠、大鼠及其他实验动物的研究,并且alzet渗透泵可减轻科研人员夜间及周末给药的困扰。alzet渗透泵无需外部连接或频繁处…...

CVPR 2022 Oral | Bailando: 基于编舞记忆和Actor-Critic GPT的3D舞蹈生成

目录 测试结果: 02 提出的方法 测试结果: 预测有3个步骤,速度比较慢 02 提出的方法 1. 针对舞蹈序列的VQ-VAE和编舞记忆 与之前的方法不同,我们不学习从音频特征到 3D 关键点序列的连续域的直接映射。相反,我们先让…...

解读电影级视频生成模型 MovieFactory

Diffusion Models视频生成-博客汇总 前言:MovieFactory是第一个全自动电影生成模型,可以根据用户输入的文本信息自动扩写剧本,并生成电影级视频。其中针对预训练的图像生成模型与视频模型之间的gap提出了微调方法非常值得借鉴。这篇博客详细解读一下这篇论文《MovieFactory:…...

【Python从入门到进阶】50、当当网Scrapy项目实战(三)

接上篇《49、当当网Scrapy项目实战(二)》 上一篇我们讲解了的Spider与item之间的关系,以及如何使用item,以及使用pipelines管道进行数据下载的操作,本篇我们来讲解Scrapy的多页面下载如何实现。 一、多页面下载原理分…...

【调试记录】vscode远程连接问题汇总

1. kex_exchange_identification kex_exchange_identification: read: Connection reset by xxx.xx.xx.x 一直连不上实验室的服务器,用PUTTY和Mobaxterm也不行(报错:Remote side unexpectedly closed network connection)。已知…...

基于springboot的疾病防控综合系统

采用技术 基于springboot的疾病防控综合系统的设计与实现~ 开发语言:Java 数据库:MySQL 技术:SpringBootMyBatis 工具:IDEA/Ecilpse、Navicat、Maven 系统效果展示 用户功能效果 打卡管理 接种记录查看 公告信息查看 社区…...

js实现文本内容过长中间显示...两端正常展示

实现效果 实现思路 获取标题盒子的真实宽度, 我这里用的是clientWidth;获取文本内容所占的实际宽度;根据文字的大小计算出每个文字所占的宽度;判断文本内容的实际宽度是否超出了标题盒子的宽度;通过文字所占的宽度累加之和与标题…...

Buran勒索病毒通过Microsoft Excel Web查询文件进行传播

Buran勒索病毒首次出现在2019年5月,是一款新型的基于RaaS模式进行传播的新型勒索病毒,在一个著名的俄罗斯论坛中进行销售,与其他基于RaaS勒索病毒(如GandCrab)获得30%-40%的收入不同,Buran勒索病毒的作者仅占感染产生的25%的收入,…...

中间件 | Redis - [基本信息]

INDEX 1 常规用法2 QPS3 pipeline 1 常规用法 分布式锁 最常见用法,需要注意分布式锁的redis需要单点 分布式事务 分布式事务中,核心的技术难点其实是分布式事务这个事本身作为数据的持久化 2PC,比如 seata 的 AT 模式下,将 un…...

【Docker】Neo4j 容器化部署

Neo4j环境标准软件基于Bitnami neo4j 构建。当前版本为5.17.0 你可以通过轻云UC部署工具直接安装部署,也可以手动按如下文档操作,该项目已经全面开源,可以从如下环境获取 配置文件地址: https://gitee.com/qingplus/qingcloud-platform Qin…...

Visual studio编译器报1个无法解析的外部命令

解决思路:(以下思路需对照代码进行逐点分析) ①:代码里函数有声明,但是没有定义 (初学者错这个比较多) ②:类中有静态变量成员,没有对它进行初始化(是变量&…...

微信小程序(五十三)修改用户头像与昵称

注释很详细,直接上代码 上一篇 新增内容: 1.外界面个人资料基本模块 2.资料修改界面同步问题实现(细节挺多,考虑了后期转服务器端的方便之处) 源码: app.json {"window": {},"usingCompone…...

VUE3 显示Echarts百度地图

本次实现最终效果 技术基础以及环境要求 vue3 echarts 百度地图API 要求1: VUE3 环境搭建:https://blog.csdn.net/LQ_001/article/details/136293795 要求2: VUE3 echatrs 环境搭建:https://blog.csdn.net/LQ_001/article/details/1363…...

FFmpeg将视频包AVPacket通过视频流方式写入本地文件

1.写视频头 void writeVideoHeader(const char* videoFileName){int r avformat_alloc_output_context2(&pFormatCtx, nullptr, nullptr,videoFileName);if(r < 0){qDebug()<<"Error: avformat_alloc_output_context2: "<<av_err2str(r);return;…...

C语言连接【MySQL】

稍等更新图片。。。。 文章目录 安装 MySQL 库连接 MySQLMYSQL 类创建 MySQL 对象连接数据库关闭数据库连接示例 发送命令设置编码格式插入、删除或修改记录查询记录示例 参考资料 安装 MySQL 库 在 CentOS7 下&#xff0c;使用命令安装 MySQL&#xff1a; yum install mysq…...

_note_09

1.说一说类加载的过程 加载&#xff08;Loading&#xff09; -> 验证&#xff08;Verification&#xff09; -> 准备&#xff08;Preparation&#xff09; -> 解析&#xff08;Resolution&#xff09; -> 初始化&#xff08;Initialization&#xff09;类的加载是…...

未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?

编辑&#xff1a;陈萍萍的公主一点人工一点智能 未来机器人的大脑&#xff1a;如何用神经网络模拟器实现更智能的决策&#xff1f;RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战&#xff0c;在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...

基于Flask实现的医疗保险欺诈识别监测模型

基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施&#xff0c;由雇主和个人按一定比例缴纳保险费&#xff0c;建立社会医疗保险基金&#xff0c;支付雇员医疗费用的一种医疗保险制度&#xff0c; 它是促进社会文明和进步的…...

1688商品列表API与其他数据源的对接思路

将1688商品列表API与其他数据源对接时&#xff0c;需结合业务场景设计数据流转链路&#xff0c;重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点&#xff1a; 一、核心对接场景与目标 商品数据同步 场景&#xff1a;将1688商品信息…...

华为OD机试-食堂供餐-二分法

import java.util.Arrays; import java.util.Scanner;public class DemoTest3 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseint a in.nextIn…...

拉力测试cuda pytorch 把 4070显卡拉满

import torch import timedef stress_test_gpu(matrix_size16384, duration300):"""对GPU进行压力测试&#xff0c;通过持续的矩阵乘法来最大化GPU利用率参数:matrix_size: 矩阵维度大小&#xff0c;增大可提高计算复杂度duration: 测试持续时间&#xff08;秒&…...

在WSL2的Ubuntu镜像中安装Docker

Docker官网链接: https://docs.docker.com/engine/install/ubuntu/ 1、运行以下命令卸载所有冲突的软件包&#xff1a; for pkg in docker.io docker-doc docker-compose docker-compose-v2 podman-docker containerd runc; do sudo apt-get remove $pkg; done2、设置Docker…...

ArcGIS Pro制作水平横向图例+多级标注

今天介绍下载ArcGIS Pro中如何设置水平横向图例。 之前我们介绍了ArcGIS的横向图例制作&#xff1a;ArcGIS横向、多列图例、顺序重排、符号居中、批量更改图例符号等等&#xff08;ArcGIS出图图例8大技巧&#xff09;&#xff0c;那这次我们看看ArcGIS Pro如何更加快捷的操作。…...

视频行为标注工具BehaviLabel(源码+使用介绍+Windows.Exe版本)

前言&#xff1a; 最近在做行为检测相关的模型&#xff0c;用的是时空图卷积网络&#xff08;STGCN&#xff09;&#xff0c;但原有kinetic-400数据集数据质量较低&#xff0c;需要进行细粒度的标注&#xff0c;同时粗略搜了下已有开源工具基本都集中于图像分割这块&#xff0c…...

在Mathematica中实现Newton-Raphson迭代的收敛时间算法(一般三次多项式)

考察一般的三次多项式&#xff0c;以r为参数&#xff1a; p[z_, r_] : z^3 (r - 1) z - r; roots[r_] : z /. Solve[p[z, r] 0, z]&#xff1b; 此多项式的根为&#xff1a; 尽管看起来这个多项式是特殊的&#xff0c;其实一般的三次多项式都是可以通过线性变换化为这个形式…...

[ACTF2020 新生赛]Include 1(php://filter伪协议)

题目 做法 启动靶机&#xff0c;点进去 点进去 查看URL&#xff0c;有 ?fileflag.php说明存在文件包含&#xff0c;原理是php://filter 协议 当它与包含函数结合时&#xff0c;php://filter流会被当作php文件执行。 用php://filter加编码&#xff0c;能让PHP把文件内容…...