Langchain-Chatchat本地搭建ChatGLM3模型和提取PDF内容
文章目录
- 1、软件要求
- 2、安装CUDA
- 2.1、安装gcc
- 2.2、安装CUDA
- 3、安装Anaconda3
- 3.1、下载Anaconda3
- 3.2、创建python虚拟环境
- 4、部署系统
- 4.1、下载源码
- 4.2、安装依赖
- 4.3、下载模型
- 4.4、初始化配置和知识库
- 4.4.1、初始化配置
- 4.4.2、初始化知识库
- 4.5、运行
- 4.6、运行
- 4.6.1、启动
- 4.6.2、启动创建知识库和上传pdf
- 4.6.3、问答提取内容
1、软件要求
Linux Ubuntu 22.04.5 kernel version 6.7
最低要求
该要求仅针对标准模式,轻量模式使用在线模型,不需要安装torch等库,也不需要显卡即可运行。
- Python 版本: >= 3.8(很不稳定), < 3.12
- CUDA 版本: >= 12.1
推荐要求
开发者在以下环境下进行代码调试,在该环境下能够避免最多环境问题。 - Python 版本 == 3.11.7
- CUDA 版本: == 12.1
本文是基于Ubuntu 22.04.1 LTS (GNU/Linux 5.15.133.1-microsoft-standard-WSL2 x86_64)测试
2、安装CUDA
2.1、安装gcc
输入gcc -version检查是否安装了gcc
~$ gcc --version
Command 'gcc' not found, but can be installed with:
sudo apt install gcc
2.2、安装CUDA
输入nvidia-smi查看支持CUDA的版本,支持的最高版本是12.3
当前pytorch最高支持12.1,在官网https://developer.nvidia.com/cuda-toolkit-archive下载12.1.1版本
输入命令下载安装
wget https://developer.download.nvidia.com/compute/cuda/12.1.1/local_installers/cuda_12.1.1_530.30.02_linux.run
sudo sh cuda_12.1.1_530.30.02_linux.run
配置环境变量,输入vi ~/.bashrc命令打开文件
export PATH=/usr/local/cuda-12.1/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda-12.1/lib64:$LD_LIBRARY_PATH
刷新环境变量source ~/.bashrc
3、安装Anaconda3
3.1、下载Anaconda3
官网下载:https://www.anaconda.com/download/
清华镜像:https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/
当前最新版本:https://repo.anaconda.com/archive/Anaconda3-2023.09-0-Linux-x86_64.sh
下载完成,输入下边命令安装
sh Anaconda3-2023.09-0-Linux-x86_64.sh
3.2、创建python虚拟环境
conda create -n python311 python=3.11# 激活环境
conda activate python311
# 如果activate不存在,改用source激活环境
# source activate python311
# 退出环境
conda deactivate python311
4、部署系统
4.1、下载源码
浏览器下载:Langchain-Chatchat-0.2.10.zip:https://github.com/chatchat-space/Langchain-Chatchat/releases
也可以通过git拉取最新仓库
# git拉取最新仓库
git clone https://github.com/chatchat-space/Langchain-Chatchat.git
4.2、安装依赖
# 进入目录
$ cd Langchain-Chatchat# 安装全部依赖
# 使用国内源下载依赖更快:https://mirrors.aliyun.com/pypi/simple/,https://pypi.tuna.tsinghua.edu.cn/simple/
# 全部依赖
$ pip install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/
# api运行依赖
$ pip install -r requirements_api.txt -i https://mirrors.aliyun.com/pypi/simple/
# webui运行依赖
$ pip install -r requirements_webui.txt -i https://mirrors.aliyun.com/pypi/simple/
# 默认依赖包括基本运行环境(FAISS向量库)。如果要使用 milvus/pg_vector 等向量库,请将 requirements.txt 中相应依赖取消注释再安装。
4.3、下载模型
$ git lfs install
# 下载LLM模型,国内从魔塔下载更快
$ git clone https://www.modelscope.cn/ZhipuAI/chatglm3-6b.git
# git clone https://huggingface.co/THUDM/chatglm3-6b# 下载Embedding 模型,国内从魔塔下载更快
$ git clone https://www.modelscope.cn/AI-ModelScope/bge-large-zh.git
# git clone https://huggingface.co/BAAI/bge-large-zh
4.4、初始化配置和知识库
4.4.1、初始化配置
# 初始化Langchain-Chatchat-0.2.10\configs目录内的配置文件
$ python copy_config_example.py
- 基础配置项 basic_config.py
该配置基负责记录日志的格式和储存路径,通常不需要修改。 - 模型配置项 model_config.py
EMBEDDING_MODEL = "bge-large-zh" # 修改为bge-large-zh
# Embedding 模型运行设备。设为 "auto" 会自动检测(会有警告),也可手动设定为 "cuda","mps","cpu","xpu" 其中
EMBEDDING_DEVICE = "cuda"# 要运行的 LLM 名称,可以包括本地模型和在线模型。列表中本地模型将在启动项目时全部加载。
# 列表中第一个模型将作为 API 和 WEBUI 的默认模型。
# 在这里,我们使用目前主流的两个离线模型,其中,chatglm3-6b 为默认加载模型。
LLM_MODELS = ["chatglm3-6b", "zhipu-api", "openai-api"]
# LLM 模型运行设备。设为"auto"会自动检测(会有警告),也可手动设定为 "cuda","mps","cpu","xpu" 其中之一。
LLM_DEVICE = "cuda" # 修改为cpu
MODEL_PATH = {"embed_model": {......"bge-large-zh": "/mnt/d/project/python/model/BAAI/bge-large-zh", # 修改为物理路径......},"llm_model": {......"chatglm3-6b": "/mnt/d/project/python/model/THUDM/chatglm3-6b", # 修改为物理路径......},
- 提示词配置项 prompt_config.py
提示词配置分为三个板块,分别对应三种聊天类型。
llm_chat: 基础的对话提示词, 通常来说,直接是用户输入的内容,没有系统提示词。
knowledge_base_chat: 与知识库对话的提示词,在模板中,我们为开发者设计了一个系统提示词,开发者可以自行更改。
agent_chat: 与Agent对话的提示词,同样,我们为开发者设计了一个系统提示词,开发者可以自行更改。
# prompt模板使用Jinja2语法,简单点就是用双大括号代替f-string的单大括号 请注意,本配置文件支持热加载,修改prompt模板后无需重启服务。
- 数据库配置 kb_config.py
- 服务和端口配置项 server_config.py
# 这些模型必须是在model_config.MODEL_PATH或ONLINE_MODEL中正确配置的。
# 在启动startup.py时,可用通过`--model-name xxxx yyyy`指定模型,不指定则为LLM_MODELS
FSCHAT_MODEL_WORKERS = {......"chatglm3-6b": {"device": "cuda", # 配置为cuda},......
}
4.4.2、初始化知识库
## 默认依赖包括基本运行环境(FAISS向量库),初始化自己的知识库
$ python init_database.py --recreate-vs#如果您已经有创建过知识库,可以先执行以下命令创建或更新数据库表:
# python init_database.py --create-tables
4.5、运行
# 一键启动脚本 startup.py, 一键启动所有 Fastchat 服务、API 服务、WebUI 服务,示例代码:
$ python startup.py -a
并可使用 Ctrl + C 直接关闭所有运行服务。
可选参数包括 -a (或–all-webui), --all-api, --llm-api, -c (或–controller), --openai-api, -m (或–model-worker), --api, --webui,其中:
- –all-webui 为一键启动 WebUI 所有依赖服务;
- –all-api 为一键启动 API 所有依赖服务;
- –llm-api 为一键启动 Fastchat 所有依赖的 LLM 服务;
- –openai-api 为仅启动 FastChat 的 controller 和 openai-api-server 服务;
- 其他为单独服务启动选项。
若想指定非默认模型,需要用 --model-name 选项,示例:
$ python startup.py --all-webui --model-name Qwen-7B-Chat
更多信息可通过 python startup.py -h 查看。
4.6、运行
本文运行例子:上传一个PDF文档到知识库,并通过问答的方式提取PDF内容。
4.6.1、启动
4.6.2、启动创建知识库和上传pdf
4.6.3、问答提取内容
问答方式提取内容,除了第一个社会信用代码不准确外,其它问题都能返回准确答案
安装部署参考自
相关文章:

Langchain-Chatchat本地搭建ChatGLM3模型和提取PDF内容
文章目录 1、软件要求2、安装CUDA2.1、安装gcc2.2、安装CUDA 3、安装Anaconda33.1、下载Anaconda33.2、创建python虚拟环境 4、部署系统4.1、下载源码4.2、安装依赖4.3、下载模型4.4、初始化配置和知识库4.4.1、初始化配置4.4.2、初始化知识库 4.5、运行4.6、运行4.6.1、启动4.…...

案例分析篇03:一篇文章搞定软考设计模式考点(2024年软考高级系统架构设计师冲刺知识点总结系列文章)
专栏系列文章推荐: 2024高级系统架构设计师备考资料(高频考点&真题&经验)https://blog.csdn.net/seeker1994/category_12593400.html 【历年案例分析真题考点汇总】与【专栏文章案例分析高频考点目录】(2024年软考高级系统架构设计师冲刺知识点总结-案例分析篇-…...

套接字的地址结构,IP地址转换函数,网络编程的接口
目录 一、套接字的地址结构 1.1 通用socket地址结构 1.2 专用socket地址结构 1.2.1 tcp协议族 1.2.3 IP协议族 二、IP地址转换函数 三、网络编程接口 3.1 socket() 3.2 bind() 3.3 listen() 3.4 accept() 3.5 connect() 3.6 close() 3.7 recv()、send() 3.8 recv…...
Java回顾总结--RandomAccessFile和NIO
目录 一、RandomAccessFile1.1 为什么要有RandomAccessFile?1.2 常用方法简介1.3 RandomAccessFile 特点和优势1.3.1 既可以读也可以写1.3.2 可以指定位置读写 1.4 示例 二、NIONIO使用示例 一、RandomAccessFile 1.1 为什么要有RandomAccessFile? Ran…...
2024年3月第15届蓝桥杯青少组STEMA考试C++中高级真题试卷
第15届蓝桥杯青少组STEMA考试C中高级真题试卷(2024年3月) 题目总数:11 总分数:400 选择题 第 1 题 单选题 (110010)2(c3)16的结果是( )。 A. (240)10 B. (11110101)2 C. (366)8 D. (f6)16 第 2 题 单选题 …...
Hyperf AOP 和 注解
注解 (hyperf.wiki) AOP 面向切面编程 (hyperf.wiki) 切面 定义切面(Aspect) 根据官方教程定义一个切面。可以指定类、方法、参数和注解上生效。 <?php namespace App\Aspect;use App\Service\SomeClass; use App\Annotation\SomeAnnotation; use Hyperf\Di\Annotatio…...

【C++】string类(介绍、常用接口)
🌈个人主页:秦jh__https://blog.csdn.net/qinjh_?spm1010.2135.3001.5343🔥 系列专栏:http://t.csdnimg.cn/eCa5z 目录 string类的常用接口说明 string类对象的常见构造 编辑 string字符串的遍历(迭代器…...
SpringBoot项目中同时支持https和http协议
实用干货!看壹哥如何在SpringBoot项目中同时支持https和http协议_springboot http htpps共存-CSDN博客...
三大排序:冒泡、选择、插入
冒泡排序: 冒泡排序(Bubble Sort)是一种简单的排序算法。它通过比较相邻元素的大小,并交换它们的位置,使较大(或较小)的元素逐渐“浮”到数组的一端,从而实现排序的目的。 下面是冒…...
Android中MultiDex优化
MultiDex基本思路 当一个Dex文件太肥的时候(方法数目太多、文件太大),在打包或在安装或运行apk也会出问题。 解决方法就是将这个硕大的Dex文件拆分成若干个小的Dex文件。 刚好一个ClassLoader可以有多个DexFile。 MultiDex主要性能瓶颈 解压缩和Dex优化(…...
MySQL 8.0 的执行计划(EXPLAIN)
MySQL 8.0 的执行计划(也称为“EXPLAIN”计划)是数据库优化器为 SQL 查询生成的步骤序列。解读执行计划可以帮助数据库管理员(DBA)和开发者理解查询如何执行,识别潜在的性能问题,并据此优化查询。 下面是如…...

leetcode——二叉树问题汇总
leetcode 144. 二叉树的前序遍历 ①递归法: /*** Definition for a binary tree node.* public class TreeNode {* int val;* TreeNode left;* TreeNode right;* TreeNode() {}* TreeNode(int val) { this.val val; }* TreeNode(int val,…...
Android基础开发-饿汉式申请权限
1、案例,打开app时,就要申请权限 直接在onCreateView中申请所有权限就可,然后在选择的回调里边判断申请的结果 package com.example.client;import android.Manifest; import android.content.Intent; import android.content.pm.PackageMa…...

java Day7 正则表达式|异常
文章目录 1、正则表达式1.1 常用1.2 字符串匹配,提取,分割 2、异常2.1 运行时异常2.2 编译时异常2.3 自定义异常2.3.1 自定义编译时异常2.3.2 自定义运行时异常 1、正则表达式 就是由一些特定的字符组成,完成一个特定的规则 可以用来校验数据…...

Python算法题集_搜索二维矩阵
Python算法题集_搜索二维矩阵 题74:搜索二维矩阵1. 示例说明2. 题目解析- 题意分解- 优化思路- 测量工具 3. 代码展开1) 标准求解【矩阵展开为列表二分法】2) 改进版一【行*列区间二分法】3) 改进版二【第三方模块】 4. 最优算法5. 相关资源 本文为Python算法题集之…...
学习笔记:顺序表和链表(一、顺序表)
首先来个导言: 1.数组的优势:下标的随机访问,物理空间连续。数组指针用[ ]或者 * , 结构体指针用 - > 2.书写习惯 test.c写出主体框架 QelList.c写出结构体、头文件、函数声明 QelList.c写出函数的实现 3.挪动:如果从前…...

Midjourney从入门到实战:图像生成命令及参数详解
目录 0 专栏介绍1 Midjourney Bot常用命令2 Midjourney绘图指令格式3 Midjourney绘图指令参数3.1 模型及版本3.2 画面比例3.3 风格化3.4 图片质量3.5 混乱值3.6 随机数种子3.7 重复贴图3.8 停止3.8 垫图权重3.9 提示词权重分割 0 专栏介绍 🔥Midjourney是目前主流的…...

C语言分析基础排序算法——插入排序
目录 插入排序 直接插入排序 希尔排序 希尔排序基本思路解析 希尔排序优化思路解析 完整希尔排序文件 插入排序 直接插入排序 所谓直接插入排序,即每插入一个数据和之前的数据进行大小比较,如果较大放置在后面,较小放置在前面&#x…...

海格里斯HEGERLS智能托盘四向车系统为物流仓储自动化升级提供新答案
随着实体企业面临需求多样化、订单履行实时化、商业模式加速迭代等挑战,客户对物流仓储解决方案的需求也逐渐趋向于柔性化、智能化。作为近十年来发展起来的新型智能仓储设备,四向车系统正是弥补了先前托盘搬运领域柔性解决方案的空白。随着小车本体设计…...

SQLiteC/C++接口详细介绍-sqlite3类(一)
上一篇:SQLiteC/C接口简介 下一篇:SQLiteC/C接口详细介绍(二) 引言: SQLite C/C 数据库接口是一个流行的SQLite库使用形式,它允许开发者在C和C代码中嵌入 SQLite 基本功能的解决方案。通过 SQLite C/C 数据…...
ubuntu搭建nfs服务centos挂载访问
在Ubuntu上设置NFS服务器 在Ubuntu上,你可以使用apt包管理器来安装NFS服务器。打开终端并运行: sudo apt update sudo apt install nfs-kernel-server创建共享目录 创建一个目录用于共享,例如/shared: sudo mkdir /shared sud…...
连锁超市冷库节能解决方案:如何实现超市降本增效
在连锁超市冷库运营中,高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术,实现年省电费15%-60%,且不改动原有装备、安装快捷、…...

Linux --进程控制
本文从以下五个方面来初步认识进程控制: 目录 进程创建 进程终止 进程等待 进程替换 模拟实现一个微型shell 进程创建 在Linux系统中我们可以在一个进程使用系统调用fork()来创建子进程,创建出来的进程就是子进程,原来的进程为父进程。…...

听写流程自动化实践,轻量级教育辅助
随着智能教育工具的发展,越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式,也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建,…...

基于 TAPD 进行项目管理
起因 自己写了个小工具,仓库用的Github。之前在用markdown进行需求管理,现在随着功能的增加,感觉有点难以管理了,所以用TAPD这个工具进行需求、Bug管理。 操作流程 注册 TAPD,需要提供一个企业名新建一个项目&#…...
深入浅出Diffusion模型:从原理到实践的全方位教程
I. 引言:生成式AI的黎明 – Diffusion模型是什么? 近年来,生成式人工智能(Generative AI)领域取得了爆炸性的进展,模型能够根据简单的文本提示创作出逼真的图像、连贯的文本,乃至更多令人惊叹的…...
CppCon 2015 学习:Time Programming Fundamentals
Civil Time 公历时间 特点: 共 6 个字段: Year(年)Month(月)Day(日)Hour(小时)Minute(分钟)Second(秒) 表示…...

C++--string的模拟实现
一,引言 string的模拟实现是只对string对象中给的主要功能经行模拟实现,其目的是加强对string的底层了解,以便于在以后的学习或者工作中更加熟练的使用string。本文中的代码仅供参考并不唯一。 二,默认成员函数 string主要有三个成员变量,…...
Python 高级应用10:在python 大型项目中 FastAPI 和 Django 的相互配合
无论是python,或者java 的大型项目中,都会涉及到 自身平台微服务之间的相互调用,以及和第三发平台的 接口对接,那在python 中是怎么实现的呢? 在 Python Web 开发中,FastAPI 和 Django 是两个重要但定位不…...

数据结构:泰勒展开式:霍纳法则(Horner‘s Rule)
目录 🔍 若用递归计算每一项,会发生什么? Horners Rule(霍纳法则) 第一步:我们从最原始的泰勒公式出发 第二步:从形式上重新观察展开式 🌟 第三步:引出霍纳法则&…...