当前位置: 首页 > news >正文

【算法】一类支持向量机OC-SVM

【算法】一类支持向量机OC-SVM

  • 前言
  • 一类支持向量机OC-SVM 概念介绍
  • 示例编写
    • 数据集创建
    • 实现一类支持向量机OC-SVM
    • 完整的示例输出


前言

由于之前毕设期间主要的工具就是支持向量机,从基础的回归和分类到后来的优化,在接触到支持向量机还有一类支持向量机的,对其产生了一定的兴趣,并对研究过程中的相关示例进行记录,主要是基础的一类支持向量机OC-SVM示例蜂群算法优化一类支持向量机超参数示例,方便后续的查看。

一类支持向量机OC-SVM 概念介绍

OC-SVM(One-Class Support Vector Machine)是一种支持向量机(Support Vector Machine,SVM)的变体,用于异常检测和异常检测问题。与传统的SVM只能处理二分类问题不同,OC-SVM旨在通过仅使用正例样本来学习一个描述正例样本特征的超平面,并尽可能将负例样本远离该超平面。

在OC-SVM中,训练样本仅包含正例样本,目标是找到一个最优的超平面,使得正例样本尽可能地位于该超平面上方,并使负例样本尽可能地位于该超平面下方。这样,当新的样本点被映射到特征空间时,可以根据其相对于超平面的位置进行分类,从而判断其是否为异常样本。

该介绍不那么通俗易懂,看了一篇文章,简单的说,以前的svm 分类有明细的划分,现在的oc-svm则只有一个类别的划分,也就是正例,至于其他的都归属于负例。这个在大神的知乎文章什么是一类支持向量机(one class SVM),是指分两类的支持向量机吗?中有通俗的例子讲解,这边不进行重复论述。

示例编写

主要是基于vscode 编译器展开python的编写,只需要在扩展中下载Python 插件即可。
在这里插入图片描述

数据集创建

数据集包括测试与训练集,由于一类支持向量机OC-SVM在示例中只要采用python 中的OneClassSVM,而它返回的预测标签如果 正常数据点返回 1,异常点返回 -1 ,因此在数据集的标签要做相应的处理,正例为1,负例为-1。

# 假设 X 是训练数据,它应该是一个形状为 (n_samples, n_features) 的二维数组
# 这里我们创建一个简单的示例数据集
X = np.random.normal(size=(100, 2))
binary_array = np.random.randint(2, size=100)
binary_array=np.where(binary_array == 0, -1, 1)
# 预测
# 使用训练好的模型预测新数据点的标签,正常数据点返回 1,异常点返回 -1
X_test = np.random.normal(size=(10, 2))

实现一类支持向量机OC-SVM

主要采用OneClassSVM,也是sklearn库里面的,pip 一下就行。使用起来跟svm 基本一样。

# 创建一个 OneClassSVM 对象
# 通过 'nu' 参数来控制错误率的上界和支持向量的比例
# 'kernel' 参数可以选择核函数,例如 'rbf' 代表径向基函数核
# 'gamma' 是 'rbf', 'poly' 和 'sigmoid' 核函数的系数
ocsvm = svm.OneClassSVM(nu=0.1, kernel="rbf", gamma=0.1)
  • ‘nu’ 参数来控制错误率的上界和支持向量的比例
  • ‘kernel’ 参数可以选择核函数,例如 ‘rbf’ 代表径向基函数核
  • ‘gamma’ 是 ‘rbf’, ‘poly’ 和 ‘sigmoid’ 核函数的系数
  • ‘shrinking’ 参数如果设为 True,则会使用启发式收缩
  • ‘tol’ 是停止训练的误差值大小
  • ‘cache_size’ 是指定训练时使用的缓存大小
  • ‘verbose’ 是控制日志输出的数量

这个可以直接看源码的注释,里面都有介绍。

完整的示例输出

# demo
from sklearn import svm
import numpy as np# 假设 X 是训练数据,它应该是一个形状为 (n_samples, n_features) 的二维数组
# 这里我们创建一个简单的示例数据集
X = np.random.normal(size=(100, 2))
binary_array = np.random.randint(2, size=100)
binary_array=np.where(binary_array == 0, -1, 1)
print(binary_array)# 创建一个 OneClassSVM 对象
# 通过 'nu' 参数来控制错误率的上界和支持向量的比例
# 'kernel' 参数可以选择核函数,例如 'rbf' 代表径向基函数核
# 'gamma' 是 'rbf', 'poly' 和 'sigmoid' 核函数的系数
ocsvm = svm.OneClassSVM(nu=0.1, kernel="rbf", gamma=0.1)# 训练模型
ocsvm.fit(X,binary_array)# 预测
# 使用训练好的模型预测新数据点的标签,正常数据点返回 1,异常点返回 -1
X_test = np.random.normal(size=(10, 2))
# print(X_test)
print("--------------")
predictions = ocsvm.predict(X_test)# 输出预测结果
print(predictions)
print("--------------")
# 也可以使用 decision_function 方法来获取每个样本到决策边界的距离
# 负数通常表示异常值
distances = ocsvm.decision_function(X_test)
print(distances)

在这里插入图片描述
从输出的结果来看,有2组示例预测为负例,然后可以通过与真实标签比较,调整超参数来提交预测的精度。也可以嵌入寻优方法,这个在往期博文都有介绍,比如ga、pso等等。

在资源中上传了用蜂群算法优化一类支持向量机超参数的2个示例,有需要可以直接下载使用。

相关文章:

【算法】一类支持向量机OC-SVM

【算法】一类支持向量机OC-SVM 前言一类支持向量机OC-SVM 概念介绍示例编写数据集创建实现一类支持向量机OC-SVM完整的示例输出 前言 由于之前毕设期间主要的工具就是支持向量机,从基础的回归和分类到后来的优化,在接触到支持向量机还有一类支持向量机的…...

深入学习默认成员函数——c++指南

前言:类和对象是面向对象语言的重要概念。 c身为一门既面向过程,又面向对象的语言。 想要学习c, 首先同样要先了解类和对象。 本节就类和对象的几种构造函数相关内容进行深入的解析。 目录 类和对象的基本概念 封装 类域和类体 访问限定符…...

psutil, 一个超级有用的Python库

Python的psutil是一个跨平台的库,可以用于获取系统运行时的各种信息,包括CPU使用率、内存使用情况、磁盘和网络信息等。它主要用来做系统监控,性能分析,进程管理。它实现了同等命令行工具提供的功能,如ps、top、lsof、…...

[Python]`threading.local`创建线程本地数据

在Python中,threading.local是一个用于创建线程本地数据的工具。它允许每个线程拥有自己独立的变量副本,这样可以在多线程程序中避免共享变量带来的问题。 通过使用threading.local,你可以为每个线程创建一个独立的变量空间,这样…...

删除数据表

oracle从入门到总裁:​​​​​​https://blog.csdn.net/weixin_67859959/article/details/135209645 删除数据表属于数据库对象的操作 drop table 表名称; 删除 emp30 表 SQL> drop table emp30;表已删除。 上面这个语句运行后,就会把数据表 emp30 删除 在…...

前端自带的base64转化方法

前端html的base64使用方法window.btoa()和window.atob()_html用window.btoa();-CSDN博客...

图论(二)之最短路问题

最短路 Dijkstra求最短路 文章目录 最短路Dijkstra求最短路栗题思想题目代码代码如下bellman-ford算法分析只能用bellman-ford来解决的题型题目完整代码 spfa求最短路spfa 算法思路明确一下松弛的概念。spfa算法文字说明:spfa 图解: 题目完整代码总结ti…...

.NET Core 日志记录功能详解

在软件开发和运维过程中,日志记录是一个非常重要的功能。它可以帮助开发者跟踪应用程序的运行状况、诊断和监控问题。.NET Core 提供了一个灵活且易于使用的日志系统,本文将详细介绍.NET Core日志的相关概念、配置和使用方法。 1. 什么是日志记录以及它…...

docker——启动各种服务

1.Mysql 2.Redis 3.nginx 4.ES 注意:ES7之后环境为 -e ELASTICSEARCH_HOSTS http://ip地址:9200...

git远程仓库使用

赋值这个地址clone 克隆之后 cd slam_oncloud/ git remote add chenxnew ssh://git192.168.3.40:1022/chenxiao/slam_oncloud.git 查看一下 linuxchenxiao:/media/linux/mydisk/cloud_slam/slam_oncloud$ git remote add chenxnew ssh://git192.168.3.40:1022/chenxiao/sla…...

js导出的excel文件无法打开/打开乱码,excel无法打开xxx.xlsx因为文件格式或文件扩展无效

excel无法打开xxx.xlsx因为文件格式或文件扩展无效 使用 a 标签导出这里就不细说了,直接说上述问题解决方案 在调用导出接口的时候加上两个参数 responseType: “blob” responseEncoding: “utf8” export function test(data) {return util({url: /test,method: …...

透明多级分流系统(用户端缓存和负载均衡)

部件考虑 有些设备位于客户端或者网络边缘,能够迅速响应用户请求,避免给cpu和数据库带来压力,比如,本地缓存,内容分发网络,反向代理等。 有些设备处理能力能够线性扩展,易于伸缩,应…...

Python sort从大到小排序面试题

在Python中,你可以使用内置的sorted()函数或者列表的sort()方法来对列表中的元素进行从大到小的排序。 使用sorted()函数: numbers [3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5] sorted_numbers sorted(numbers, reverseTrue) # 设置reverseTrue实现从大到小排…...

【Stable Diffusion】入门:AI绘画提示词+参数设置攻略

目录 1 提示词1.1 分类和书写方式1.1.1 内容型提示词1.1.2 标准化提示词1.1.3 通用模板 1.2 权重1.2.1 套括号1.2.2 数字权重1.2.3 进阶语法 1.3 负面提示词 2 参数详解2.1 Sampling steps2.2 Sampling method2.3 Width, Height2.4 CFG Scale2.5 Seed2.6 Batch count, Batch si…...

Qt使用Q_DECLARE_INTERFACE Q_INTERFACES宏实现接口类使用qobject_cast进行类型转换

在写抽象类或者接口的时候&#xff0c;肯定是不能继承QObject的 但是又想使用qobject_cast进行类型转换&#xff0c;使用以下办法就能实现 #ifndef FACTORYINTERFACE_H__ #define FACTORYINTERFACE_H__ #include <QObject> class FactoryInterface{ public:FactoryInterf…...

docker离线搭建仓库

要在Docker中搭建本地仓库&#xff0c;可以按照以下步骤进行操作&#xff1a; 首先安装 Docker。根据不同的操作系统选择合适的版本并完成安装过程。打开命令行工具&#xff08;如Terminal或PowerShell&#xff09;&#xff0c;运行以下命令来创建一个新的容器并将其设置为本地…...

ABC344 A-E题解

文章目录 A题目AC Code&#xff1a; B题目AC Code&#xff1a; C题目AC Code&#xff1a; D题目AC Code&#xff1a; E题目AC Code&#xff1a; 不易不难&#xff0c;写到5题很简单&#xff0c;但是要有足够的思维能力。 A 题目 我们用一个 flag 变量记录我们是不是在两个竖…...

Jeecg-boot 初次启动项目失败

1.将IDEA的字符编码全部改成utf-8 2. 更改database的密码 3.换个jdk重新启动...

封装的echarts子组件使用watch监听option失效的问题

项目场景&#xff1a; 我在项目里面封装了一个echarts组件&#xff0c;组件接收一个来自外部的option,然后我用了一个watch函数去监听这个option的变化&#xff0c;option变化之后&#xff0c;销毁&#xff0c;然后再新建一个charts表 碎碎念 问题如标题所示&#xff0c;这篇…...

爬虫入门到精通_框架篇14(PySpider架构概述及用法详解)

官方文档 Sample Code&#xff1a; from pyspider.libs.base_handler import *class Handler(BaseHandler):crawl_config {}# minutes24 * 60&#xff1a;每隔一天重新爬取every(minutes24 * 60)def on_start(self):self.crawl(http://scrapy.org/, callbackself.index_page)…...

RocketMQ延迟消息机制

两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数&#xff0c;对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后&#xf…...

FFmpeg 低延迟同屏方案

引言 在实时互动需求激增的当下&#xff0c;无论是在线教育中的师生同屏演示、远程办公的屏幕共享协作&#xff0c;还是游戏直播的画面实时传输&#xff0c;低延迟同屏已成为保障用户体验的核心指标。FFmpeg 作为一款功能强大的多媒体框架&#xff0c;凭借其灵活的编解码、数据…...

【入坑系列】TiDB 强制索引在不同库下不生效问题

文章目录 背景SQL 优化情况线上SQL运行情况分析怀疑1:执行计划绑定问题?尝试:SHOW WARNINGS 查看警告探索 TiDB 的 USE_INDEX 写法Hint 不生效问题排查解决参考背景 项目中使用 TiDB 数据库,并对 SQL 进行优化了,添加了强制索引。 UAT 环境已经生效,但 PROD 环境强制索…...

ssc377d修改flash分区大小

1、flash的分区默认分配16M、 / # df -h Filesystem Size Used Available Use% Mounted on /dev/root 1.9M 1.9M 0 100% / /dev/mtdblock4 3.0M...

(二)TensorRT-LLM | 模型导出(v0.20.0rc3)

0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述&#xff0c;后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作&#xff0c;其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...

学习STC51单片机31(芯片为STC89C52RCRC)OLED显示屏1

每日一言 生活的美好&#xff0c;总是藏在那些你咬牙坚持的日子里。 硬件&#xff1a;OLED 以后要用到OLED的时候找到这个文件 OLED的设备地址 SSD1306"SSD" 是品牌缩写&#xff0c;"1306" 是产品编号。 驱动 OLED 屏幕的 IIC 总线数据传输格式 示意图 …...

相机从app启动流程

一、流程框架图 二、具体流程分析 1、得到cameralist和对应的静态信息 目录如下: 重点代码分析: 启动相机前,先要通过getCameraIdList获取camera的个数以及id,然后可以通过getCameraCharacteristics获取对应id camera的capabilities(静态信息)进行一些openCamera前的…...

Unit 1 深度强化学习简介

Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库&#xff0c;例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体&#xff0c;比如 SnowballFight、Huggy the Do…...

成都鼎讯硬核科技!雷达目标与干扰模拟器,以卓越性能制胜电磁频谱战

在现代战争中&#xff0c;电磁频谱已成为继陆、海、空、天之后的 “第五维战场”&#xff0c;雷达作为电磁频谱领域的关键装备&#xff0c;其干扰与抗干扰能力的较量&#xff0c;直接影响着战争的胜负走向。由成都鼎讯科技匠心打造的雷达目标与干扰模拟器&#xff0c;凭借数字射…...

根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:

根据万维钢精英日课6的内容&#xff0c;使用AI&#xff08;2025&#xff09;可以参考以下方法&#xff1a; 四个洞见 模型已经比人聪明&#xff1a;以ChatGPT o3为代表的AI非常强大&#xff0c;能运用高级理论解释道理、引用最新学术论文&#xff0c;生成对顶尖科学家都有用的…...