有趣的数学 毕达哥拉斯定理
随便找个学生,让他举出一位著名的数学家——如果他能想到的话,他往往会选择毕达哥拉斯。如果不是,也许他想到的是阿基米德。哪怕是杰出的艾萨克·牛顿,在两位古代世界的巨星面前也只能叨陪末座了。阿基米德是一位思想巨人,毕达哥拉斯或许算不上,但人们往往低估了他的贡献,他值得更多赞誉——不在于他做出了什么,而在于他推动了什么。
在公元前570年左右,毕达哥拉斯出生在爱琴海东部的希腊萨摩斯岛。他是一位哲学家和几何学家。我们对他的生活所知甚少,而且信息都来自很久之后的记述,其历史准确性存疑,但关键事件很可能是对的。公元前530年左右,他搬到古希腊殖民地克罗顿(今意大利)。他在那里创立了一个哲学宗教团体——“毕达哥拉斯学派”,他们相信宇宙是基于数字的。时至今日,其创始人的名声就来自以他的名字命名的定理。这个定理已被教授了两千多年,还进入了流行文化。
由于历史的不可考,现代人并不知道毕达哥拉斯是否真的证明了他的定理。事实上,根本不知道这是否是他的定理。它完全有可能是毕达哥拉斯的一个仆从,或某个古巴比伦或苏美尔的抄写员发现的。但人们把它归功于毕达哥拉斯,他的名字就流传下来了。无论其起源如何,这个定理和它的结果对人类历史产生了巨大的影响。它们的的确确拓展了我们的世界。
古希腊人并没有将毕达哥拉斯定理表达为现代符号意义上的等式。那是随着代数的发展才出现的。在古代,该定理以口头和几何的方式表达。亚历山大里亚的欧几里得的著作记载了它最优雅的形式,这也是它的第一个文献证据。公元前250年左右,欧几里得写下了著名的《几何原本》——有史以来最具影响力的数学教科书,成为第一位现代数学家。
欧几里得把几何学变成了逻辑:他明确地列出了自己的基本假设,并援引这些假设,为他的所有定理提供系统的证明。他建造了一座概念之塔,其基础是点、线和圆,而塔尖则恰好存在五种正多面体。
欧几里得几何“王冠上的明珠”就是我们现在所说的毕达哥拉斯定理:《几何原本》第一卷中的命题47。在托马斯·希思爵士的著名译本中,这个命题是这样写的:“在直角三角形中,直角所对的边上的正方形等于夹直角的边上的两个正方形。”
就高等数学而言,古希腊人使用的是直线和面积,而不是数字。所以毕达哥拉斯和他的古希腊后人将这个定理解释为面积相等:“用直角三角形中最长边构造的正方形面积,是由另外两边构造的正方形面积的和。”最长的一条边就是著名的“斜边”(hypotenuse),意思是“在下面拉伸”。如果你以恰当的方向画图,确实如此,如下图(左)所示。

左:欧几里得证明毕达哥拉斯定理的构造线。中和右:定理的另一证明。外部正方形的面积相等,阴影三角形的面积也相等。因此,倾斜的白色正方形面积等于其他两个白色正方形面积之和。
2000年后,毕达哥拉斯定理就被重写为代数方程,毕达哥拉斯方程有许多用途和意义。最直接的是,给定另外两边,它可以让你计算斜边的长度。
我们在现实生活中遇到的许多三角形都不是直角三角形,因此方程的直接应用似乎有限。但是,任何三角形都可以分割成两个直角三角形,而任何多边形都可以分割成若干三角形。因此,直角三角形是关键:它们证明了三角形的形状与其边的长度之间存在有用的关系。从这一见解中发展出来的学科是三角学——“三角形的测量”。
直角三角形是三角学的基础,特别是它决定了基本的三角函数:正弦、余弦和正切。这些名称源于阿拉伯语,而这些函数及其许多前辈的发展史,展示了今天这个版本经历了什么样的复杂路径。
欧几里得《几何原本》中的毕达哥拉斯定理的证明,把这个定理牢牢地限定在欧氏几何的范围内。“欧氏几何”这个词一度可以直接换成“几何”,因为我们通常认为欧氏几何就是物理空间的真实几何。
但事实并非如此,后面若干年又发展出来椭圆几何(黎曼几何)、罗氏几何(双曲几何)等,都是非欧几里得几何,并且这些新的几何与欧氏几何一样逻辑自洽,遵循了除了平行公理之外的所有公理。
相关文章:
有趣的数学 毕达哥拉斯定理
随便找个学生,让他举出一位著名的数学家——如果他能想到的话,他往往会选择毕达哥拉斯。如果不是,也许他想到的是阿基米德。哪怕是杰出的艾萨克牛顿,在两位古代世界的巨星面前也只能叨陪末座了。阿基米德是一位思想巨人࿰…...
理解记忆相关
foreach循环 在 Java 中,foreach 循环(也称为增强型 for 循环)是一种简洁的语法,用于遍历数组或集合(如 List、Set、Map 等)。以下是 foreach 循环的基本用法: 遍历数组: String[] …...
零基础学习JS--基础篇--使用对象
JavaScript 的设计是一个简单的基于对象的范式。一个对象就是一系列属性的集合,一个属性包含一个名和一个值。一个属性的值可以是函数,这种情况下属性也被称为方法。除了浏览器里面预定义的那些对象之外,你也可以定义你自己的对象。本章节讲述…...
DHCP中继实验(华为)
思科设备参考:DHCP中继实验(思科) 一,技术简介 DHCP中继,可以实现在不同子网和物理网段之间处理和转发DHCP信息的功能。如果DHCP客户机与DHCP服务器在同一个物理网段,则客户机可以正确地获得动态分配的IP…...
【数据结构】初识二叉搜索树(Binary Search Tree)
文章目录 1. 二叉搜索树的概念2. 二叉搜索树的操作1.1 二叉搜索树的查找1.2 二叉搜索树的插入1.3 二叉搜索树的删除 1. 二叉搜索树的概念 二叉搜索树又称二叉排序树,它可能是一棵空树,也可能是具有以下性质的二叉树: 若它的左子树不为空&am…...
数据库系统概念(第一周)
⚽前言 🏐四个基本概念 一、数据 定义 种类 特点 二、数据库 三、数据库管理系统(DBMS) 四、 数据库系统(DBS) 🏀数据库系统和文件系统对比 文件系统的弊端 🥎数据视图 数据抽象 …...
如何确定限流阈值:面试官问我,我怎么答?
在面试过程中,系统高并发是经常需要考察的,而熔断限流又是必考的,当面试官问及如何确定限流的阈值时,他们实际上是在考察你是否理解限流的本质及其在实际工作中是否有过经验。限流是一种常用的系统保护措施,用于防止过…...
HW干货集合 | HW面试题记录(1)
整理最近护网面试问的问题 前言 一开始会问问你在工作中负责的是什么工作(如果在职),参与过哪些项目。还有些会问问你之前有没有护网的经历,如果没有的话一般都会被定到初级(技术特牛的另说)。下面就是一…...
数据集踩的坑及解决方案汇总
数据集踩的坑及解决方案汇总 数据集各种格式构建并训练自己的数据集汇总Yolo系列SSDMask R-CNN报错 NotADirectoryError: [Errno 20] Not a directory: /Users/mia/Desktop/P-Clean/mask-RCNN/PennFudanPed2/labelme_json/.DS_StoreFaster R-CNN数据的格式转换划分数据集设定内…...
机器学习流程—数据预处理 Encoding
机器学习流程—数据预处理 Encoding 在机器学习中,我们经常会遇到分类变量,这些分量变量往往机器学习模型没有办法从中学习,往往有两种,一种是字符型,一种是数值型。通常需要对分类型变量做一些处理,常用的方法有两种:label encoding和one hot encoding。 例如,假设数…...
04-微服务 面试题
目录 1.Spring Cloud 常见的组件有哪些? 2.服务注册和发现是什么意思?(Spring Cloud 如何实现服务注册发现) 3.你们项目负载均衡如何实现的 ? 4.什么是服务雪崩,怎么解决这个问题? 5.你们服务是怎么监控的? 6.微服务限流(漏桶算法、令牌桶算法) 7.解释一下CAP…...
Qt连接所有同类部件到同一个槽函数
void MainWindow::AutoConnectSignals() {// 查找所有 QSpinBoxconst auto spinBoxes findChildren<QSpinBox*>();for (auto *spinBox : spinBoxes){connect(spinBox, static_cast<void(QSpinBox::*)(int)>(&QSpinBox::valueChanged), this, &ParameterW…...
spring boot 使用 webservice
spring boot 使用 webservice 使用 java 自带的 jax-ws 依赖 如果是jdk1.8,不需要引入任何依赖,如果大于1.8 <dependency><groupId>javax.jws</groupId><artifactId>javax.jws-api</artifactId><version>1.1</version&g…...
【嵌入式】嵌入式系统稳定性建设:最后的防线
🧑 作者简介:阿里巴巴嵌入式技术专家,深耕嵌入式人工智能领域,具备多年的嵌入式硬件产品研发管理经验。 📒 博客介绍:分享嵌入式开发领域的相关知识、经验、思考和感悟。提供嵌入式方向的学习指导、简历面…...
【算法】一类支持向量机OC-SVM
【算法】一类支持向量机OC-SVM 前言一类支持向量机OC-SVM 概念介绍示例编写数据集创建实现一类支持向量机OC-SVM完整的示例输出 前言 由于之前毕设期间主要的工具就是支持向量机,从基础的回归和分类到后来的优化,在接触到支持向量机还有一类支持向量机的…...
深入学习默认成员函数——c++指南
前言:类和对象是面向对象语言的重要概念。 c身为一门既面向过程,又面向对象的语言。 想要学习c, 首先同样要先了解类和对象。 本节就类和对象的几种构造函数相关内容进行深入的解析。 目录 类和对象的基本概念 封装 类域和类体 访问限定符…...
psutil, 一个超级有用的Python库
Python的psutil是一个跨平台的库,可以用于获取系统运行时的各种信息,包括CPU使用率、内存使用情况、磁盘和网络信息等。它主要用来做系统监控,性能分析,进程管理。它实现了同等命令行工具提供的功能,如ps、top、lsof、…...
[Python]`threading.local`创建线程本地数据
在Python中,threading.local是一个用于创建线程本地数据的工具。它允许每个线程拥有自己独立的变量副本,这样可以在多线程程序中避免共享变量带来的问题。 通过使用threading.local,你可以为每个线程创建一个独立的变量空间,这样…...
删除数据表
oracle从入门到总裁:https://blog.csdn.net/weixin_67859959/article/details/135209645 删除数据表属于数据库对象的操作 drop table 表名称; 删除 emp30 表 SQL> drop table emp30;表已删除。 上面这个语句运行后,就会把数据表 emp30 删除 在…...
前端自带的base64转化方法
前端html的base64使用方法window.btoa()和window.atob()_html用window.btoa();-CSDN博客...
Linux链表操作全解析
Linux C语言链表深度解析与实战技巧 一、链表基础概念与内核链表优势1.1 为什么使用链表?1.2 Linux 内核链表与用户态链表的区别 二、内核链表结构与宏解析常用宏/函数 三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势5.1 插入效率5.2 安全…...
CTF show Web 红包题第六弹
提示 1.不是SQL注入 2.需要找关键源码 思路 进入页面发现是一个登录框,很难让人不联想到SQL注入,但提示都说了不是SQL注入,所以就不往这方面想了 先查看一下网页源码,发现一段JavaScript代码,有一个关键类ctfs…...
.Net框架,除了EF还有很多很多......
文章目录 1. 引言2. Dapper2.1 概述与设计原理2.2 核心功能与代码示例基本查询多映射查询存储过程调用 2.3 性能优化原理2.4 适用场景 3. NHibernate3.1 概述与架构设计3.2 映射配置示例Fluent映射XML映射 3.3 查询示例HQL查询Criteria APILINQ提供程序 3.4 高级特性3.5 适用场…...
成都鼎讯硬核科技!雷达目标与干扰模拟器,以卓越性能制胜电磁频谱战
在现代战争中,电磁频谱已成为继陆、海、空、天之后的 “第五维战场”,雷达作为电磁频谱领域的关键装备,其干扰与抗干扰能力的较量,直接影响着战争的胜负走向。由成都鼎讯科技匠心打造的雷达目标与干扰模拟器,凭借数字射…...
wpf在image控件上快速显示内存图像
wpf在image控件上快速显示内存图像https://www.cnblogs.com/haodafeng/p/10431387.html 如果你在寻找能够快速在image控件刷新大图像(比如分辨率3000*3000的图像)的办法,尤其是想把内存中的裸数据(只有图像的数据,不包…...
Linux部署私有文件管理系统MinIO
最近需要用到一个文件管理服务,但是又不想花钱,所以就想着自己搭建一个,刚好我们用的一个开源框架已经集成了MinIO,所以就选了这个 我这边对文件服务性能要求不是太高,单机版就可以 安装非常简单,几个命令就…...
负载均衡器》》LVS、Nginx、HAproxy 区别
虚拟主机 先4,后7...
Qwen系列之Qwen3解读:最强开源模型的细节拆解
文章目录 1.1分钟快览2.模型架构2.1.Dense模型2.2.MoE模型 3.预训练阶段3.1.数据3.2.训练3.3.评估 4.后训练阶段S1: 长链思维冷启动S2: 推理强化学习S3: 思考模式融合S4: 通用强化学习 5.全家桶中的小模型训练评估评估数据集评估细节评估效果弱智评估和民间Arena 分析展望 如果…...
生信服务器 | 做生信为什么推荐使用Linux服务器?
原文链接:生信服务器 | 做生信为什么推荐使用Linux服务器? 一、 做生信为什么推荐使用服务器? 大家好,我是小杜。在做生信分析的同学,或是将接触学习生信分析的同学,<font style"color:rgb(53, 1…...
学习 Hooks【Plan - June - Week 2】
一、React API React 提供了丰富的核心 API,用于创建组件、管理状态、处理副作用、优化性能等。本文档总结 React 常用的 API 方法和组件。 1. React 核心 API React.createElement(type, props, …children) 用于创建 React 元素,JSX 会被编译成该函数…...
