Pytorch搭建AlexNet 预测实现
1.导包
import torch
import matplotlib.pyplot as plt
import json
from model import AlexNet
from PIL import Image
from torchvision import transforms
2.数据预处理
data_transform = transforms.Compose([transforms.Resize((224, 224)), # 将图片重新裁剪transforms.ToTensor(), # 转化为tensortransforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) # 标准化数据
3.加载测试图片
# load image
img = Image.open("1.jpeg") # 网上随便下载,放到好找的路径下
plt.imshow(img) # 直接载入图像
img = data_transform(img) 在预处理过程中吧channel提到前面
img = torch.unsqueeze(img, dim=0) # 添加batch维度
4.读取分类文件
# read class_indent
try:# 读取保存在json文件中索引对应的类别名称json_file = open('./class_indices,json', 'r')class_indict = json.load(json_file) # 将json文件解码成字典格式
except Exception as e:print(e)exit(-1)
5.初始化网络
output = torch.squeeze(model(img)):先将图片通过正向传播得到输出,再把输出的batch压缩
predict = torch.softmax(output, dim=0):通过softmax得到一个概率分布
predict_cla = torch.argmax(predict).numpy():找到概率最大处所对应的索引值
print将类别名称和预测概率输出
# create model
model = AlexNet(num_classes=5)
model_weight_path = "./AlexNet.pth"
model.load_state_dict(torch.load(model_weight_path)) # 载入网络模型
model.eval() # 关闭dropout
with torch.no_grad():output = torch.squeeze(model(img))predict = torch.softmax(output, dim=0)predict_cla = torch.argmax(predict).numpy()
print(class_indict[str(predict_cla)], predict[predict_cla].item())
plt.show()
6.预测结果
容易把玫瑰识别成郁金香,把蒲公英识别成向日葵,郁金香,向日葵,小雏菊可以很好的识别出来,模型的准确率还是有点低。大家自己尝试测试一下吧哈哈。

PyTorch搭建AlexNet网络合集:
PyTorch搭建AlexNet网络模型-CSDN博客
PyTorch搭建AlexNet训练集-CSDN博客
Pytorch搭建AlexNet 预测实现-CSDN博客
相关文章:
Pytorch搭建AlexNet 预测实现
1.导包 import torch import matplotlib.pyplot as plt import json from model import AlexNet from PIL import Image from torchvision import transforms 2.数据预处理 data_transform transforms.Compose([transforms.Resize((224, 224)), # 将图片重新裁剪transform…...
笔记:使用parfile进行的数据导入导出
expdp ‘username/password’ parfileE:\dmp_tmp\par.txt DIRECTORYdmptmp LOGFILESYS_SEND_LOG.log DUMPFILESYS_SEND_LOG.dmp tablesSYS_SEND_LOG_BAK query“where send_dt>TO_DATE(‘2024-03-13’,‘yyyy-mm-dd’)” impdp ‘username/password’ directorydmptmp dum…...
基于YOLOv8/YOLOv7/YOLOv6/YOLOv5的行人跌倒检测系统(深度学习+UI界面+完整训练数据集)
摘要:开发行人跌倒检测系统在确保老年人安全方面扮演着至关重要的角色。本篇文章详尽地阐述了如何利用深度学习技术构建一个行人跌倒检测系统,并附上了完整的代码实现。该系统采用了先进的YOLOv8算法,并对YOLOv7、YOLOv6、YOLOv5等先前版本进…...
Ubuntu 14.04:PaddleOCR基于PaddleServing的在线服务化部署(失败)
一、 二、安装 注: 安装 PaddleOCR 2.3 。 因为 PaddleOCR 2.4 的 推荐环境 PaddlePaddle > 2.1.2。 https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.4/doc/doc_ch/environment.md 安装前的环境准备 在使用Paddle Serving之前,需要完…...
Java JUC 笔记(2)
Java JUC 笔记(2) 锁框架 JDK5以后增加了Lock接口用来实现锁功能,其提供了与synchronized类似的同步功能,但是在使用时手动的获取和释放锁 Lock和Condition锁 这里的锁与synchronized锁不太一样,我们可以认为是Loc…...
webpack5高级--02_提升打包构建速度
提升打包构建速度 一、HotModuleReplacement 为什么 开发时我们修改了其中一个模块代码,Webpack 默认会将所有模块全部重新打包编译,速度很慢。 所以我们需要做到修改某个模块代码,就只有这个模块代码需要重新打包编译,其他模…...
MAC M芯片 Anaconda安装
Anaconda安装 1.M芯片下载AnaConda 1.M芯片下载AnaConda https://www.anaconda.com/download 安装完成 conda的版本是24.1.2...
【JS】自动下拉网页刷新,当出现指定关键字,就打印出来
批量检查域名是否可以注册 1、有的网站数据是通过下拉发生请求,间隔x毫秒自动下拉 2、查找某个关键字,找到就打印出来 3、打印数据自动去重 4、当连续n次下拉,没有新div元素出来,就停止该循环 var map {}; var count 0; var l…...
中兴通讯联手新疆移动,开通全疆首个乡农场景700M+900M双频双模基站
日前,在新疆博尔塔拉蒙古自治州,中兴通讯携手新疆移动共同完成了全疆首个乡农场景的700M900M双频双模基站建设,其通过采用“700M与900M共天馈共RRU设备”,成功实现乡农4/5G网络的同站址快速部署,为新疆的农牧业发展注入…...
爬虫案例4: parsel 模块的运用
目标页面: https://www.shanghairanking.cn/rankings/bcur/2023 打印在终端import requests import json from urllib.parse import urljoin from parsel import Selectorurl https://www.shanghairanking.cn/rankings/bcur/2023headers {User-Agent: Mozilla/5.0 (Macintosh…...
数据结构·复杂度
目录 1 时间复杂度 2 大O渐进表示法 举例子(计算时间复杂度为多少) 3 空间复杂度 前言:复杂度分为时间复杂度和空间复杂度,两者是不同维度的,所以比较不会放在一起比较,但是时间复杂度和空间复杂度是用…...
数学建模理论与实践国防科大版
目录 1.数学建模概论 2.生活中的数学建模 2.1.行走步长问题 2.2.雨中行走问题 2.3.抽奖策略 2.4.《非诚勿扰》女生的“最优选择” 3.集体决策模型 3.1.简单多数规则 3.2.Borda数规则 3.3.群体决策模型公理和阿罗定理 1.数学建模概论 1.数学模型的概念 2.数学建模的概…...
Yakit爆破模块应用
yakit介绍 一款集成了各种渗透测试功能的集成软件。(类似于burp,但我感觉他功能挺强大) 爆破模块位置 按照下面图标点击 界面就是如下。 左侧可以选择爆破的类型,各种数据库http,ssh等都支持。 爆破参数 可以选择…...
【3GPP】【核心网】【5G】NAS连接管理和UE注册管理状态(超详细)
1. NAS连接管理 NAS连接管理包括通过N1接口在UE和AMF之间建立和释放NAS信令连接的功能。NAS信令连接用于实现UE与核心网络之间的NAS信令交换。当UE接入5G网络时,首先与基站建立RRC连接,当RRC连接建立完成后,UE与基站的空口连接成功建立。随后…...
细粒度IP定位参文2(Corr-SLG):A street-level IP geolocation method (2021年)
[2]S. Ding, F. Zhao, and X. Luo, “A street-level IP geolocation method based on delay-distance correlation and multilayered common routers,” Secur. Commun. Netw., vol. 2021, no. 1, pp. 1–10, 2021. 智能设备的地理位置可以帮助提供多媒体内容提供商和5G网络中…...
Mac上使用M1或M2芯片的设备安装Node.js时遇到一些问题,比如卡顿或性能问题
对于Mac上使用M1或M2芯片的设备可能会遇到在安装Node.js时遇到一些问题,比如卡顿或性能问题。这可能是因为某些软件包或工具在M1或M2芯片上的兼容性不佳。为了解决这个问题,您可以尝试以下方法: 1. 使用Rosetta模式 对于一些尚未适配M1或M2…...
学习vue3第四节(ref以及ref相关api)
主要记录以下api:ref()、isRef()、unref()、 shallowRef()、triggerRef()、customRef() 1、ref() 定义 接受一个内部值,返回一个响应式的、可更改的 ref 对象,此对象只有一个指向其内部值的属性 .value,.value属性用于追踪并且存…...
关于电脑无法开启5G频段热点的解决方案
tips:本文是本着解决校园网开热点后限速的问题的目的,具体情况具体对待。 1.找到设备管理器 右键该选项 2.在新弹出窗口选择首选频带 3.选择首选5GHz频带 确定之后重新连接wifi,重新开启热点,大功告成。 后记:在使用2.4ghz开热点…...
清理磁盘空间 - Win系统
清理磁盘空间 - Win系统 前言系统方案TreeSize FreeSpaceSniffer 前言 我们在使用电脑时经常会出现硬盘空间不足的情况,下文介绍如何清理磁盘空间,包含系统方案、TreeSize Free和SpaceSniffer。清理Window更新等系统文件推荐使用系统方案,清…...
科技革新的引擎-2024年AI辅助研发趋势
随着科技的飞速发展,人工智能(AI)已经在许多领域展现出了其强大的潜力和价值。特别是在研发领域,AI的辅助作用日益凸显,成为推动科技革新的重要引擎。在2024年,这种趋势将更加明显,我们可以从以…...
《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》
在注意力分散、内容高度同质化的时代,情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现,消费者对内容的“有感”程度,正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中࿰…...
[ICLR 2022]How Much Can CLIP Benefit Vision-and-Language Tasks?
论文网址:pdf 英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用 目录 1. 心得 2. 论文逐段精读 2.1. Abstract 2…...
Redis的发布订阅模式与专业的 MQ(如 Kafka, RabbitMQ)相比,优缺点是什么?适用于哪些场景?
Redis 的发布订阅(Pub/Sub)模式与专业的 MQ(Message Queue)如 Kafka、RabbitMQ 进行比较,核心的权衡点在于:简单与速度 vs. 可靠与功能。 下面我们详细展开对比。 Redis Pub/Sub 的核心特点 它是一个发后…...
面向无人机海岸带生态系统监测的语义分割基准数据集
描述:海岸带生态系统的监测是维护生态平衡和可持续发展的重要任务。语义分割技术在遥感影像中的应用为海岸带生态系统的精准监测提供了有效手段。然而,目前该领域仍面临一个挑战,即缺乏公开的专门面向海岸带生态系统的语义分割基准数据集。受…...
DingDing机器人群消息推送
文章目录 1 新建机器人2 API文档说明3 代码编写 1 新建机器人 点击群设置 下滑到群管理的机器人,点击进入 添加机器人 选择自定义Webhook服务 点击添加 设置安全设置,详见说明文档 成功后,记录Webhook 2 API文档说明 点击设置说明 查看自…...
ubuntu22.04有线网络无法连接,图标也没了
今天突然无法有线网络无法连接任何设备,并且图标都没了 错误案例 往上一顿搜索,试了很多博客都不行,比如 Ubuntu22.04右上角网络图标消失 最后解决的办法 下载网卡驱动,重新安装 操作步骤 查看自己网卡的型号 lspci | gre…...
6.9-QT模拟计算器
源码: 头文件: widget.h #ifndef WIDGET_H #define WIDGET_H#include <QWidget> #include <QMouseEvent>QT_BEGIN_NAMESPACE namespace Ui { class Widget; } QT_END_NAMESPACEclass Widget : public QWidget {Q_OBJECTpublic:Widget(QWidget *parent nullptr);…...
高端性能封装正在突破性能壁垒,其芯片集成技术助力人工智能革命。
2024 年,高端封装市场规模为 80 亿美元,预计到 2030 年将超过 280 亿美元,2024-2030 年复合年增长率为 23%。 细分到各个终端市场,最大的高端性能封装市场是“电信和基础设施”,2024 年该市场创造了超过 67% 的收入。…...
计算机系统结构复习-名词解释2
1.定向:在某条指令产生计算结果之前,其他指令并不真正立即需要该计算结果,如果能够将该计算结果从其产生的地方直接送到其他指令中需要它的地方,那么就可以避免停顿。 2.多级存储层次:由若干个采用不同实现技术的存储…...
比较数据迁移后MySQL数据库和ClickHouse数据仓库中的表
设计一个MySQL数据库和Clickhouse数据仓库的表数据比较的详细程序流程,两张表是相同的结构,都有整型主键id字段,需要每次从数据库分批取得2000条数据,用于比较,比较操作的同时可以再取2000条数据,等上一次比较完成之后,开始比较,直到比较完所有的数据。比较操作需要比较…...
