Pytorch搭建AlexNet 预测实现
1.导包
import torch
import matplotlib.pyplot as plt
import json
from model import AlexNet
from PIL import Image
from torchvision import transforms
2.数据预处理
data_transform = transforms.Compose([transforms.Resize((224, 224)), # 将图片重新裁剪transforms.ToTensor(), # 转化为tensortransforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) # 标准化数据
3.加载测试图片
# load image
img = Image.open("1.jpeg") # 网上随便下载,放到好找的路径下
plt.imshow(img) # 直接载入图像
img = data_transform(img) 在预处理过程中吧channel提到前面
img = torch.unsqueeze(img, dim=0) # 添加batch维度
4.读取分类文件
# read class_indent
try:# 读取保存在json文件中索引对应的类别名称json_file = open('./class_indices,json', 'r')class_indict = json.load(json_file) # 将json文件解码成字典格式
except Exception as e:print(e)exit(-1)
5.初始化网络
output = torch.squeeze(model(img)):先将图片通过正向传播得到输出,再把输出的batch压缩
predict = torch.softmax(output, dim=0):通过softmax得到一个概率分布
predict_cla = torch.argmax(predict).numpy():找到概率最大处所对应的索引值
print将类别名称和预测概率输出
# create model
model = AlexNet(num_classes=5)
model_weight_path = "./AlexNet.pth"
model.load_state_dict(torch.load(model_weight_path)) # 载入网络模型
model.eval() # 关闭dropout
with torch.no_grad():output = torch.squeeze(model(img))predict = torch.softmax(output, dim=0)predict_cla = torch.argmax(predict).numpy()
print(class_indict[str(predict_cla)], predict[predict_cla].item())
plt.show()
6.预测结果
容易把玫瑰识别成郁金香,把蒲公英识别成向日葵,郁金香,向日葵,小雏菊可以很好的识别出来,模型的准确率还是有点低。大家自己尝试测试一下吧哈哈。

PyTorch搭建AlexNet网络合集:
PyTorch搭建AlexNet网络模型-CSDN博客
PyTorch搭建AlexNet训练集-CSDN博客
Pytorch搭建AlexNet 预测实现-CSDN博客
相关文章:
Pytorch搭建AlexNet 预测实现
1.导包 import torch import matplotlib.pyplot as plt import json from model import AlexNet from PIL import Image from torchvision import transforms 2.数据预处理 data_transform transforms.Compose([transforms.Resize((224, 224)), # 将图片重新裁剪transform…...
笔记:使用parfile进行的数据导入导出
expdp ‘username/password’ parfileE:\dmp_tmp\par.txt DIRECTORYdmptmp LOGFILESYS_SEND_LOG.log DUMPFILESYS_SEND_LOG.dmp tablesSYS_SEND_LOG_BAK query“where send_dt>TO_DATE(‘2024-03-13’,‘yyyy-mm-dd’)” impdp ‘username/password’ directorydmptmp dum…...
基于YOLOv8/YOLOv7/YOLOv6/YOLOv5的行人跌倒检测系统(深度学习+UI界面+完整训练数据集)
摘要:开发行人跌倒检测系统在确保老年人安全方面扮演着至关重要的角色。本篇文章详尽地阐述了如何利用深度学习技术构建一个行人跌倒检测系统,并附上了完整的代码实现。该系统采用了先进的YOLOv8算法,并对YOLOv7、YOLOv6、YOLOv5等先前版本进…...
Ubuntu 14.04:PaddleOCR基于PaddleServing的在线服务化部署(失败)
一、 二、安装 注: 安装 PaddleOCR 2.3 。 因为 PaddleOCR 2.4 的 推荐环境 PaddlePaddle > 2.1.2。 https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.4/doc/doc_ch/environment.md 安装前的环境准备 在使用Paddle Serving之前,需要完…...
Java JUC 笔记(2)
Java JUC 笔记(2) 锁框架 JDK5以后增加了Lock接口用来实现锁功能,其提供了与synchronized类似的同步功能,但是在使用时手动的获取和释放锁 Lock和Condition锁 这里的锁与synchronized锁不太一样,我们可以认为是Loc…...
webpack5高级--02_提升打包构建速度
提升打包构建速度 一、HotModuleReplacement 为什么 开发时我们修改了其中一个模块代码,Webpack 默认会将所有模块全部重新打包编译,速度很慢。 所以我们需要做到修改某个模块代码,就只有这个模块代码需要重新打包编译,其他模…...
MAC M芯片 Anaconda安装
Anaconda安装 1.M芯片下载AnaConda 1.M芯片下载AnaConda https://www.anaconda.com/download 安装完成 conda的版本是24.1.2...
【JS】自动下拉网页刷新,当出现指定关键字,就打印出来
批量检查域名是否可以注册 1、有的网站数据是通过下拉发生请求,间隔x毫秒自动下拉 2、查找某个关键字,找到就打印出来 3、打印数据自动去重 4、当连续n次下拉,没有新div元素出来,就停止该循环 var map {}; var count 0; var l…...
中兴通讯联手新疆移动,开通全疆首个乡农场景700M+900M双频双模基站
日前,在新疆博尔塔拉蒙古自治州,中兴通讯携手新疆移动共同完成了全疆首个乡农场景的700M900M双频双模基站建设,其通过采用“700M与900M共天馈共RRU设备”,成功实现乡农4/5G网络的同站址快速部署,为新疆的农牧业发展注入…...
爬虫案例4: parsel 模块的运用
目标页面: https://www.shanghairanking.cn/rankings/bcur/2023 打印在终端import requests import json from urllib.parse import urljoin from parsel import Selectorurl https://www.shanghairanking.cn/rankings/bcur/2023headers {User-Agent: Mozilla/5.0 (Macintosh…...
数据结构·复杂度
目录 1 时间复杂度 2 大O渐进表示法 举例子(计算时间复杂度为多少) 3 空间复杂度 前言:复杂度分为时间复杂度和空间复杂度,两者是不同维度的,所以比较不会放在一起比较,但是时间复杂度和空间复杂度是用…...
数学建模理论与实践国防科大版
目录 1.数学建模概论 2.生活中的数学建模 2.1.行走步长问题 2.2.雨中行走问题 2.3.抽奖策略 2.4.《非诚勿扰》女生的“最优选择” 3.集体决策模型 3.1.简单多数规则 3.2.Borda数规则 3.3.群体决策模型公理和阿罗定理 1.数学建模概论 1.数学模型的概念 2.数学建模的概…...
Yakit爆破模块应用
yakit介绍 一款集成了各种渗透测试功能的集成软件。(类似于burp,但我感觉他功能挺强大) 爆破模块位置 按照下面图标点击 界面就是如下。 左侧可以选择爆破的类型,各种数据库http,ssh等都支持。 爆破参数 可以选择…...
【3GPP】【核心网】【5G】NAS连接管理和UE注册管理状态(超详细)
1. NAS连接管理 NAS连接管理包括通过N1接口在UE和AMF之间建立和释放NAS信令连接的功能。NAS信令连接用于实现UE与核心网络之间的NAS信令交换。当UE接入5G网络时,首先与基站建立RRC连接,当RRC连接建立完成后,UE与基站的空口连接成功建立。随后…...
细粒度IP定位参文2(Corr-SLG):A street-level IP geolocation method (2021年)
[2]S. Ding, F. Zhao, and X. Luo, “A street-level IP geolocation method based on delay-distance correlation and multilayered common routers,” Secur. Commun. Netw., vol. 2021, no. 1, pp. 1–10, 2021. 智能设备的地理位置可以帮助提供多媒体内容提供商和5G网络中…...
Mac上使用M1或M2芯片的设备安装Node.js时遇到一些问题,比如卡顿或性能问题
对于Mac上使用M1或M2芯片的设备可能会遇到在安装Node.js时遇到一些问题,比如卡顿或性能问题。这可能是因为某些软件包或工具在M1或M2芯片上的兼容性不佳。为了解决这个问题,您可以尝试以下方法: 1. 使用Rosetta模式 对于一些尚未适配M1或M2…...
学习vue3第四节(ref以及ref相关api)
主要记录以下api:ref()、isRef()、unref()、 shallowRef()、triggerRef()、customRef() 1、ref() 定义 接受一个内部值,返回一个响应式的、可更改的 ref 对象,此对象只有一个指向其内部值的属性 .value,.value属性用于追踪并且存…...
关于电脑无法开启5G频段热点的解决方案
tips:本文是本着解决校园网开热点后限速的问题的目的,具体情况具体对待。 1.找到设备管理器 右键该选项 2.在新弹出窗口选择首选频带 3.选择首选5GHz频带 确定之后重新连接wifi,重新开启热点,大功告成。 后记:在使用2.4ghz开热点…...
清理磁盘空间 - Win系统
清理磁盘空间 - Win系统 前言系统方案TreeSize FreeSpaceSniffer 前言 我们在使用电脑时经常会出现硬盘空间不足的情况,下文介绍如何清理磁盘空间,包含系统方案、TreeSize Free和SpaceSniffer。清理Window更新等系统文件推荐使用系统方案,清…...
科技革新的引擎-2024年AI辅助研发趋势
随着科技的飞速发展,人工智能(AI)已经在许多领域展现出了其强大的潜力和价值。特别是在研发领域,AI的辅助作用日益凸显,成为推动科技革新的重要引擎。在2024年,这种趋势将更加明显,我们可以从以…...
rknn优化教程(二)
文章目录 1. 前述2. 三方库的封装2.1 xrepo中的库2.2 xrepo之外的库2.2.1 opencv2.2.2 rknnrt2.2.3 spdlog 3. rknn_engine库 1. 前述 OK,开始写第二篇的内容了。这篇博客主要能写一下: 如何给一些三方库按照xmake方式进行封装,供调用如何按…...
可靠性+灵活性:电力载波技术在楼宇自控中的核心价值
可靠性灵活性:电力载波技术在楼宇自控中的核心价值 在智能楼宇的自动化控制中,电力载波技术(PLC)凭借其独特的优势,正成为构建高效、稳定、灵活系统的核心解决方案。它利用现有电力线路传输数据,无需额外布…...
Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决
Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决 问题背景 在一个基于 Spring Cloud Gateway WebFlux 构建的微服务项目中,新增了一个本地验证码接口 /code,使用函数式路由(RouterFunction)和 Hutool 的 Circle…...
React---day11
14.4 react-redux第三方库 提供connect、thunk之类的函数 以获取一个banner数据为例子 store: 我们在使用异步的时候理应是要使用中间件的,但是configureStore 已经自动集成了 redux-thunk,注意action里面要返回函数 import { configureS…...
在Ubuntu24上采用Wine打开SourceInsight
1. 安装wine sudo apt install wine 2. 安装32位库支持,SourceInsight是32位程序 sudo dpkg --add-architecture i386 sudo apt update sudo apt install wine32:i386 3. 验证安装 wine --version 4. 安装必要的字体和库(解决显示问题) sudo apt install fonts-wqy…...
Vue3中的computer和watch
computed的写法 在页面中 <div>{{ calcNumber }}</div>script中 写法1 常用 import { computed, ref } from vue; let price ref(100);const priceAdd () > { //函数方法 price 1price.value ; }//计算属性 let calcNumber computed(() > {return ${p…...
机器学习的数学基础:线性模型
线性模型 线性模型的基本形式为: f ( x ) ω T x b f\left(\boldsymbol{x}\right)\boldsymbol{\omega}^\text{T}\boldsymbol{x}b f(x)ωTxb 回归问题 利用最小二乘法,得到 ω \boldsymbol{\omega} ω和 b b b的参数估计$ \boldsymbol{\hat{\omega}}…...
基于开源AI智能名片链动2 + 1模式S2B2C商城小程序的沉浸式体验营销研究
摘要:在消费市场竞争日益激烈的当下,传统体验营销方式存在诸多局限。本文聚焦开源AI智能名片链动2 1模式S2B2C商城小程序,探讨其在沉浸式体验营销中的应用。通过对比传统品鉴、工厂参观等初级体验方式,分析沉浸式体验的优势与价值…...
字符串哈希+KMP
P10468 兔子与兔子 #include<bits/stdc.h> using namespace std; typedef unsigned long long ull; const int N 1000010; ull a[N], pw[N]; int n; ull gethash(int l, int r){return a[r] - a[l - 1] * pw[r - l 1]; } signed main(){ios::sync_with_stdio(false), …...
结构化文件管理实战:实现目录自动创建与归类
手动操作容易因疲劳或疏忽导致命名错误、路径混乱等问题,进而引发后续程序异常。使用工具进行标准化操作,能有效降低出错概率。 需要快速整理大量文件的技术用户而言,这款工具提供了一种轻便高效的解决方案。程序体积仅有 156KB,…...
