当前位置: 首页 > news >正文

如何借助CRM系统获得直观的业务洞察?CRM系统图表视图解析!

Zoho CRM管理系统在优化客户体验方面持续发力,新年新UI,一波新功能正在赶来的路上。今天要介绍的新UI功能在正式推出之前,已经通过早鸟申请的方式给部分国际版用户尝过鲜了。Zoho CRM即将推出图表视图,将原始数据转换为直观的图表,丰富了数据展示形式,更符合使用习惯,快速获得直观的业务洞察。

从数据到洞察:列表视图和图表视图

如果非要比较Zoho CRM中常规的列表视图,和即将发布的图表视图孰优孰劣,只能说成年人的世界不做选择题,两个都需要。为了更好地理解什么场景适合列表,什么时候适合图表,先来看看两者的区别。

下图是一张典型的列表清单:

上图列表中提供了逾期商机的详细信息,以及这些商机分别对应的销售人员是谁。如想专注于某一条记录的具体信息,或者希望将逾期商机重新分配给新的销售人员,总之,当使用目的是展示事实,那么逐条查看并且单独处理的列表是比较适合的。列表清单,更适合用于了解详情的场景。

同样的数据,通过图表展示如下:

可视化图表,通常用于从数据中识别模式、洞察趋势、获得更大的业务视角。在这个例子中,假如管理者不需要了解每一条逾期商机的详情,而是希望快速发现销售团队中逾期商机的大致分布,那么图表更友好。从图表中,一眼就能发现“销售2”的逾期商机最多,需要重点关注他的表现。如果没有图表,只看数据列表,虽然也可以得到同样的结论,但是要花费更多时间和精力。数据少还好说,数据多了会非常烧脑。

您可能会想,CRM集成Analytics BI商业智能工具的仪表板、图表也有类似效果,这个图表视图又有什么不同?

图表视图的好处在于,查看更方便,应用体验更好。之前,如果想查看仪表板,需要去到仪表板模块,然后找到对应的图表。有了图表视图后,在某个模块中,既可以看到数据列表,也可以看到图表,无需在不同的功能模块之间切换。无论是数据详情,还是直观图表,在一个界面中全部呈现,效率和体验都获得了极大提升。

支持哪些图表类型

新UI支持的图表类型一共四种,分别是饼图、条形图、柱状图、环形图

饼图

用饼图显示销售团队成员手中的销售机会占比,有助于快速识别出表现最好的销售,跟踪个人贡献,充分利用团队优势,科学分配资源。

条形图

下面这张条形图,按照产品名称分组展示每天的产品注册数量,轻松评估哪个产品注册量最多,随后计划下一步营销行动,是不是一目了然?

柱状图

柱状图常用于表示定量的数据。用不同高度或长度的竖条显示数据,比较不同类别。例如,我们可以使用柱状图展示某SaaS公司2023年不同产品的业绩表现和排行。

环形图

环形图又叫甜甜圈图,与饼图类似,环形图是将数据集分割成不同比例的圆形图,每个部分的大小代表了不同类别的占比。

假如您认为这四种类型不够用,更多类型的图表正在紧锣密鼓的开发中,未来在CRM系统中我们还能提供漏斗图、折线图、面积图、散点图、雷达图等更加丰富的图表。

图表视图不仅简化了数据分析,还能让CRM用户及时对业务策略进行调整,打造更敏捷、更高效的销售流程。

业务开展靠团队,仅自己可以通过图表方便地获得业务洞察是不够的,经常需要分享给团队群策群力。在CRM中,可以很方便地把这些图表分享给想要分享的成员。


CRM新UI中的新功能-图表视图已经有部分国际版用户体验过了,他们在体验后给了不少积极的反馈并表达喜爱,在不久的将来会开放给全球客户。新的一年里,Zoho CRM会持续推出更多迭代更新,携手亲爱的用户朋友通过CRM创造价值。

相关文章:

如何借助CRM系统获得直观的业务洞察?CRM系统图表视图解析!

Zoho CRM管理系统在优化客户体验方面持续发力,新年新UI,一波新功能正在赶来的路上。今天要介绍的新UI功能在正式推出之前,已经通过早鸟申请的方式给部分国际版用户尝过鲜了。Zoho CRM即将推出图表视图,将原始数据转换为直观的图表…...

制作图片马:二次渲染(upload-labs第17关)

代码分析 $im imagecreatefromjpeg($target_path);在本关的代码中这个imagecreatefromjpeg();函数起到了将上传的图片打乱并重新组合。这就意味着在制作图片马的时候要将木马插入到图片没有被改变的部分。 gif gif图的特点是无损,我们可以对比上传前后图片的内容…...

XGB-20:XGBoost中不同参数的预测函数

有许多在XGBoost中具有不同参数的预测函数。 预测选项 xgboost.Booster.predict() 方法有许多不同的预测选项,从 pred_contribs 到 pred_leaf 不等。输出形状取决于预测的类型。对于多类分类问题,XGBoost为每个类构建一棵树,每个类的树称为…...

websocket 使用示例

websocket 使用示例 前言html中使用vue3中使用1、安装websocket依赖2、代码 vue2中使用1、安装websocket依赖2、代码 前言 即时通讯webSocket 的使用 html中使用 以下是一个简单的 HTML 页面示例,它连接到 WebSocket 服务器并包含一个文本框、一个发送按钮以及 …...

基于YOLOv8/YOLOv7/YOLOv6/YOLOv5的水下目标检测系统(深度学习模型+UI界面+训练数据集)

摘要:本研究详述了一种采用深度学习技术的水下目标检测系统,该系统集成了最新的YOLOv8算法,并与YOLOv7、YOLOv6、YOLOv5等早期算法进行了性能评估对比。该系统能够在各种媒介——包括图像、视频文件、实时视频流及批量文件中——准确地识别水…...

中间件 Redis 服务集群的部署方案

前言 在互联网业务发展非常迅猛的早期,如果预算不是问题,强烈建议使用“增强单机硬件性能”的方式提升系统并发能力,因为这个阶段,公司的战略往往是发展业务抢时间,而“增强单机硬件性能”往往是最快的方法。 正是在这…...

生成哈夫曼树C卷(JavaPythonC++Node.jsC语言)

给定长度为n的无序的数字数组,每个数字代表二叉树的叶子节点的权值,数字数组的值均大于等于1。请完成一个函数,根据输入的数字数组,生成哈夫曼树,并将哈夫曼树按照中序遍历输出。 为了保证输出的二又树中序遍历结果统一,增加以下限制:二叉树节点中,左节点权值小于等于右…...

Java代码审计安全篇-SSRF(服务端请求伪造)漏洞

前言: 堕落了三个月,现在因为被找实习而困扰,着实自己能力不足,从今天开始 每天沉淀一点点 ,准备秋招 加油 注意: 本文章参考qax的网络安全java代码审计,记录自己的学习过程,还希望各…...

入门可解释机器学习和可解释性【内容分享和实战分析】

本篇文章为天池三月场读书会《可解释机器学习》的内容概述和项目实战分享,旨在为推广机器学习可解释性的应用提供一定帮助。 本次直播分享视频和实践代码以及PP获取地址:https://tianchi.aliyun.com/specials/promotion/activity/bookclub 目录 内容分…...

Promise其实也不难

难点图解:then()方法 ES6学习网站:ES6 入门教程 解决:回调地狱(回调函数中嵌套回调) 两个特点: (1)对象的状态不受外界影响。Promise对象代表一个异步操作&…...

吴恩达 x Open AI ChatGPT ——如何写出好的提示词视频核心笔记

核心知识点脑图如下: 1、第一讲:课程介绍 要点1: 上图展示了两种大型语言模型(LLMs)的对比:基础语言模型(Base LLM)和指令调整语言模型(Instruction Tuned LLM&#xff0…...

JVM从1%到99%【精选】-【初步认识】

目录 1.java虚拟机 2.JVM的位置 3.代码的执行流程 4.JVM的架构模型 5.JVM的生命周期 6.JVM的整体结构 1.java虚拟机 Java虚拟机是一台执行Java字节码的虚拟计算机,它拥有独立的运行机制,其运行的Java字节码也未必由Java语言编译而成。JVM平台的各种语言可以共享Java…...

pdf转图片(利用pdf2image包)

参考: pdf2image pip install pdf2image代码: from pdf2image import convert_from_path, convert_from_bytes import osoutput_folder ./xx/ dpi_value 600 pdf_start_page 1 # pdf显示的第一页 start_page 1 # 真实页码 prex # 图像前缀def to_…...

SwiftUI的转场动画

SwiftUI的转场动画 记录一下SwiftUI中的一些弹窗动画 import SwiftUIstruct TransitionBootCamp: View {State var showView falselet screenWidth UIScreen.main.bounds.widthlet screenHeight UIScreen.main.bounds.heightvar body: some View {ZStack(alignment: .botto…...

Trust Region Policy Optimization (TRPO)

Trust Region Policy Optimization (TRPO) 是一种强化学习算法,专门设计来改善策略梯度方法在稳定性和效率方面的表现。由 John Schulman 等人在 2015 年提出,TRPO 的核心思想是在策略优化过程中引入一个信任区域(trust region)&a…...

消息服务--Kafka的简介和使用

消息服务--Kafka的简介和使用 前言异步解耦削峰缓存1、消息队列2、kafka工作原理3、springBoot KafKa整合3.1 添加插件3.2 kafKa的自动配置类3.21 配置kafka地址3.22 如果需要发送对象配置kafka值的序列化器3.3 测试发送消息3.31 在发送测试消息的时候由于是开发环境中会遇到的…...

【c++11线程库的使用】

#include<iostream> #include<thread> #include<string> using namespace std; void hello(string msg) { for (int i 0; i < 1000; i) { cout << i; cout << endl; } } int main() { //1.创建线程 thread …...

无限debugger的几种处理方式

不少网站会在代码中加入‘debugger’&#xff0c;使你F12时一直卡在debugger&#xff0c;这种措施会让新手朋友束手无策。 js中创建debugger的方式有很多&#xff0c;基础的形式有&#xff1a; ①直接创建debugger debugger; ②通过eval创建debugger&#xff08;在虚拟机中…...

数据库基础理论知识

1.基本概念 数据(Data)&#xff1a;数据库存储的基本对象。数字、字符串、图形、图像、音频、视频等数据库(DB)&#xff1a;在计算机内&#xff0c;永久存储、有组织、可共享的数据集合数据库管理系统(DBMS)&#xff1a;管理数据库的系统软件数据库系统(DBS):DBDBMSDBADBAP 数…...

华为OD机试真题-模拟目录管理-2024年OD统一考试(C卷)

题目描述: 实现一个模拟目录管理功能的软件,输入一个命令序列,输出最后一条命令运行结果。 支持命令: 1)创建目录命令:mkdir 目录名称,如mkdir abc为在当前目录创建abc目录,如果已存在同名目录则不执行任何操作。此命令无输出。 2)进入目录命令:cd 目录名称, 如cd …...

Python|GIF 解析与构建(5):手搓截屏和帧率控制

目录 Python&#xff5c;GIF 解析与构建&#xff08;5&#xff09;&#xff1a;手搓截屏和帧率控制 一、引言 二、技术实现&#xff1a;手搓截屏模块 2.1 核心原理 2.2 代码解析&#xff1a;ScreenshotData类 2.2.1 截图函数&#xff1a;capture_screen 三、技术实现&…...

【Python】 -- 趣味代码 - 小恐龙游戏

文章目录 文章目录 00 小恐龙游戏程序设计框架代码结构和功能游戏流程总结01 小恐龙游戏程序设计02 百度网盘地址00 小恐龙游戏程序设计框架 这段代码是一个基于 Pygame 的简易跑酷游戏的完整实现,玩家控制一个角色(龙)躲避障碍物(仙人掌和乌鸦)。以下是代码的详细介绍:…...

CVPR 2025 MIMO: 支持视觉指代和像素grounding 的医学视觉语言模型

CVPR 2025 | MIMO&#xff1a;支持视觉指代和像素对齐的医学视觉语言模型 论文信息 标题&#xff1a;MIMO: A medical vision language model with visual referring multimodal input and pixel grounding multimodal output作者&#xff1a;Yanyuan Chen, Dexuan Xu, Yu Hu…...

376. Wiggle Subsequence

376. Wiggle Subsequence 代码 class Solution { public:int wiggleMaxLength(vector<int>& nums) {int n nums.size();int res 1;int prediff 0;int curdiff 0;for(int i 0;i < n-1;i){curdiff nums[i1] - nums[i];if( (prediff > 0 && curdif…...

如何将联系人从 iPhone 转移到 Android

从 iPhone 换到 Android 手机时&#xff0c;你可能需要保留重要的数据&#xff0c;例如通讯录。好在&#xff0c;将通讯录从 iPhone 转移到 Android 手机非常简单&#xff0c;你可以从本文中学习 6 种可靠的方法&#xff0c;确保随时保持连接&#xff0c;不错过任何信息。 第 1…...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个生活电费的缴纳和查询小程序

一、项目初始化与配置 1. 创建项目 ohpm init harmony/utility-payment-app 2. 配置权限 // module.json5 {"requestPermissions": [{"name": "ohos.permission.INTERNET"},{"name": "ohos.permission.GET_NETWORK_INFO"…...

NLP学习路线图(二十三):长短期记忆网络(LSTM)

在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...

10-Oracle 23 ai Vector Search 概述和参数

一、Oracle AI Vector Search 概述 企业和个人都在尝试各种AI&#xff0c;使用客户端或是内部自己搭建集成大模型的终端&#xff0c;加速与大型语言模型&#xff08;LLM&#xff09;的结合&#xff0c;同时使用检索增强生成&#xff08;Retrieval Augmented Generation &#…...

视觉slam十四讲实践部分记录——ch2、ch3

ch2 一、使用g++编译.cpp为可执行文件并运行(P30) g++ helloSLAM.cpp ./a.out运行 二、使用cmake编译 mkdir build cd build cmake .. makeCMakeCache.txt 文件仍然指向旧的目录。这表明在源代码目录中可能还存在旧的 CMakeCache.txt 文件,或者在构建过程中仍然引用了旧的路…...

【VLNs篇】07:NavRL—在动态环境中学习安全飞行

项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战&#xff0c;克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...