当前位置: 首页 > news >正文

76. 最小覆盖子串-力扣hot100(C++)

76. 最小覆盖子串s

初始化和特判

//本题做题思想
//从头开始,首先找到一个包含所有字母的字串,将i移动到包含字串字母的位置,然后更新长度和字符串ans后,
//i的位置加1,j的位置也加1,从新开始上面的流程,找一个包含所有字符串t字母的子串unordered_map<char,int>need;//need记录下来每个字母‘需要’多少,为正数//对于不需要的字母和本来需要但超出数量的字母,依旧记录,但减1后变负数int cnt = 0;//cnt记录总共需要多少个int ansnum = 100010;//ans记录最短的字符子串,ansnum维护最小的长度string ans = "";if(s.size() < t.size() ) return ans;if(s == t) return s;

统计字符数

for(int i = 0; i < t.size();i++){need[t[i]]++;
}
cnt = t.size();

找满足题目条件的字符子串

int i = 0, j = 0;while(i < s.size()){while(j < s.size() && cnt > 0){if(need[s[j]] > 0) cnt--;need[s[j]]--;if(cnt == 0 || j == s.size() - 1)break;j++;//while循环记得递增}if(cnt != 0) return ans;while(i < j){if(need[s[i]] == 0) break;need[s[i]]++;i++;//while循环记得递增}if(j - i  + 1 < ansnum){ans = s.substr(i, j - i + 1);ansnum = j - i + 1;}cnt += 1;need[s[i]]++;i++,j++;//记得递增}

具体解析过程可看此题解,本题解为C++实现,链接题解为python

相关文章:

76. 最小覆盖子串-力扣hot100(C++)

76. 最小覆盖子串s 初始化和特判 //本题做题思想 //从头开始&#xff0c;首先找到一个包含所有字母的字串&#xff0c;将i移动到包含字串字母的位置&#xff0c;然后更新长度和字符串ans后&#xff0c; //i的位置加1&#xff0c;j的位置也加1&#xff0c;从新开始上面的流程&…...

vue的生命周期有那些

1.v-text 相当于js的innerText <div v-text"姓名&#xff1a;name"></div>const name ref(张三); //声明 2.v-html 相当于js的innerHTML <div v-html"html"></div>const html ref(<s>这是一段文字</s>) 3.v-bin…...

OpenStack安装步骤

一、准备OpenStack安装环境 1、创建实验用的虚拟机实例。 内存建议16GB&#xff08;8GB也能运行&#xff09;CPU&#xff08;处理器&#xff09;双核且支持虚拟化硬盘容量不低于200GB&#xff08;&#xff01;&#xff09;网络用net桥接模式 运行虚拟机 2、禁用防火墙与SELin…...

如何借助CRM系统获得直观的业务洞察?CRM系统图表视图解析!

Zoho CRM管理系统在优化客户体验方面持续发力&#xff0c;新年新UI&#xff0c;一波新功能正在赶来的路上。今天要介绍的新UI功能在正式推出之前&#xff0c;已经通过早鸟申请的方式给部分国际版用户尝过鲜了。Zoho CRM即将推出图表视图&#xff0c;将原始数据转换为直观的图表…...

制作图片马:二次渲染(upload-labs第17关)

代码分析 $im imagecreatefromjpeg($target_path);在本关的代码中这个imagecreatefromjpeg();函数起到了将上传的图片打乱并重新组合。这就意味着在制作图片马的时候要将木马插入到图片没有被改变的部分。 gif gif图的特点是无损&#xff0c;我们可以对比上传前后图片的内容…...

XGB-20:XGBoost中不同参数的预测函数

有许多在XGBoost中具有不同参数的预测函数。 预测选项 xgboost.Booster.predict() 方法有许多不同的预测选项&#xff0c;从 pred_contribs 到 pred_leaf 不等。输出形状取决于预测的类型。对于多类分类问题&#xff0c;XGBoost为每个类构建一棵树&#xff0c;每个类的树称为…...

websocket 使用示例

websocket 使用示例 前言html中使用vue3中使用1、安装websocket依赖2、代码 vue2中使用1、安装websocket依赖2、代码 前言 即时通讯webSocket 的使用 html中使用 以下是一个简单的 HTML 页面示例&#xff0c;它连接到 WebSocket 服务器并包含一个文本框、一个发送按钮以及 …...

基于YOLOv8/YOLOv7/YOLOv6/YOLOv5的水下目标检测系统(深度学习模型+UI界面+训练数据集)

摘要&#xff1a;本研究详述了一种采用深度学习技术的水下目标检测系统&#xff0c;该系统集成了最新的YOLOv8算法&#xff0c;并与YOLOv7、YOLOv6、YOLOv5等早期算法进行了性能评估对比。该系统能够在各种媒介——包括图像、视频文件、实时视频流及批量文件中——准确地识别水…...

中间件 Redis 服务集群的部署方案

前言 在互联网业务发展非常迅猛的早期&#xff0c;如果预算不是问题&#xff0c;强烈建议使用“增强单机硬件性能”的方式提升系统并发能力&#xff0c;因为这个阶段&#xff0c;公司的战略往往是发展业务抢时间&#xff0c;而“增强单机硬件性能”往往是最快的方法。 正是在这…...

生成哈夫曼树C卷(JavaPythonC++Node.jsC语言)

给定长度为n的无序的数字数组,每个数字代表二叉树的叶子节点的权值,数字数组的值均大于等于1。请完成一个函数,根据输入的数字数组,生成哈夫曼树,并将哈夫曼树按照中序遍历输出。 为了保证输出的二又树中序遍历结果统一,增加以下限制:二叉树节点中,左节点权值小于等于右…...

Java代码审计安全篇-SSRF(服务端请求伪造)漏洞

前言&#xff1a; 堕落了三个月&#xff0c;现在因为被找实习而困扰&#xff0c;着实自己能力不足&#xff0c;从今天开始 每天沉淀一点点 &#xff0c;准备秋招 加油 注意&#xff1a; 本文章参考qax的网络安全java代码审计&#xff0c;记录自己的学习过程&#xff0c;还希望各…...

入门可解释机器学习和可解释性【内容分享和实战分析】

本篇文章为天池三月场读书会《可解释机器学习》的内容概述和项目实战分享&#xff0c;旨在为推广机器学习可解释性的应用提供一定帮助。 本次直播分享视频和实践代码以及PP获取地址&#xff1a;https://tianchi.aliyun.com/specials/promotion/activity/bookclub 目录 内容分…...

Promise其实也不难

难点图解&#xff1a;then&#xff08;&#xff09;方法 ES6学习网站&#xff1a;ES6 入门教程 解决&#xff1a;回调地狱&#xff08;回调函数中嵌套回调&#xff09; 两个特点&#xff1a; &#xff08;1&#xff09;对象的状态不受外界影响。Promise对象代表一个异步操作&…...

吴恩达 x Open AI ChatGPT ——如何写出好的提示词视频核心笔记

核心知识点脑图如下&#xff1a; 1、第一讲&#xff1a;课程介绍 要点1&#xff1a; 上图展示了两种大型语言模型&#xff08;LLMs&#xff09;的对比&#xff1a;基础语言模型&#xff08;Base LLM&#xff09;和指令调整语言模型&#xff08;Instruction Tuned LLM&#xff0…...

JVM从1%到99%【精选】-【初步认识】

目录 1.java虚拟机 2.JVM的位置 3.代码的执行流程 4.JVM的架构模型 5.JVM的生命周期 6.JVM的整体结构 1.java虚拟机 Java虚拟机是一台执行Java字节码的虚拟计算机,它拥有独立的运行机制,其运行的Java字节码也未必由Java语言编译而成。JVM平台的各种语言可以共享Java…...

pdf转图片(利用pdf2image包)

参考&#xff1a; pdf2image pip install pdf2image代码&#xff1a; from pdf2image import convert_from_path, convert_from_bytes import osoutput_folder ./xx/ dpi_value 600 pdf_start_page 1 # pdf显示的第一页 start_page 1 # 真实页码 prex # 图像前缀def to_…...

SwiftUI的转场动画

SwiftUI的转场动画 记录一下SwiftUI中的一些弹窗动画 import SwiftUIstruct TransitionBootCamp: View {State var showView falselet screenWidth UIScreen.main.bounds.widthlet screenHeight UIScreen.main.bounds.heightvar body: some View {ZStack(alignment: .botto…...

Trust Region Policy Optimization (TRPO)

Trust Region Policy Optimization (TRPO) 是一种强化学习算法&#xff0c;专门设计来改善策略梯度方法在稳定性和效率方面的表现。由 John Schulman 等人在 2015 年提出&#xff0c;TRPO 的核心思想是在策略优化过程中引入一个信任区域&#xff08;trust region&#xff09;&a…...

消息服务--Kafka的简介和使用

消息服务--Kafka的简介和使用 前言异步解耦削峰缓存1、消息队列2、kafka工作原理3、springBoot KafKa整合3.1 添加插件3.2 kafKa的自动配置类3.21 配置kafka地址3.22 如果需要发送对象配置kafka值的序列化器3.3 测试发送消息3.31 在发送测试消息的时候由于是开发环境中会遇到的…...

【c++11线程库的使用】

#include<iostream> #include<thread> #include<string> using namespace std; void hello(string msg) { for (int i 0; i < 1000; i) { cout << i; cout << endl; } } int main() { //1.创建线程 thread …...

网络六边形受到攻击

大家读完觉得有帮助记得关注和点赞&#xff01;&#xff01;&#xff01; 抽象 现代智能交通系统 &#xff08;ITS&#xff09; 的一个关键要求是能够以安全、可靠和匿名的方式从互联车辆和移动设备收集地理参考数据。Nexagon 协议建立在 IETF 定位器/ID 分离协议 &#xff08;…...

深入剖析AI大模型:大模型时代的 Prompt 工程全解析

今天聊的内容&#xff0c;我认为是AI开发里面非常重要的内容。它在AI开发里无处不在&#xff0c;当你对 AI 助手说 "用李白的风格写一首关于人工智能的诗"&#xff0c;或者让翻译模型 "将这段合同翻译成商务日语" 时&#xff0c;输入的这句话就是 Prompt。…...

【解密LSTM、GRU如何解决传统RNN梯度消失问题】

解密LSTM与GRU&#xff1a;如何让RNN变得更聪明&#xff1f; 在深度学习的世界里&#xff0c;循环神经网络&#xff08;RNN&#xff09;以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而&#xff0c;传统RNN存在的一个严重问题——梯度消失&#…...

如何为服务器生成TLS证书

TLS&#xff08;Transport Layer Security&#xff09;证书是确保网络通信安全的重要手段&#xff0c;它通过加密技术保护传输的数据不被窃听和篡改。在服务器上配置TLS证书&#xff0c;可以使用户通过HTTPS协议安全地访问您的网站。本文将详细介绍如何在服务器上生成一个TLS证…...

根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:

根据万维钢精英日课6的内容&#xff0c;使用AI&#xff08;2025&#xff09;可以参考以下方法&#xff1a; 四个洞见 模型已经比人聪明&#xff1a;以ChatGPT o3为代表的AI非常强大&#xff0c;能运用高级理论解释道理、引用最新学术论文&#xff0c;生成对顶尖科学家都有用的…...

Mobile ALOHA全身模仿学习

一、题目 Mobile ALOHA&#xff1a;通过低成本全身远程操作学习双手移动操作 传统模仿学习&#xff08;Imitation Learning&#xff09;缺点&#xff1a;聚焦与桌面操作&#xff0c;缺乏通用任务所需的移动性和灵活性 本论文优点&#xff1a;&#xff08;1&#xff09;在ALOHA…...

Springboot社区养老保险系统小程序

一、前言 随着我国经济迅速发展&#xff0c;人们对手机的需求越来越大&#xff0c;各种手机软件也都在被广泛应用&#xff0c;但是对于手机进行数据信息管理&#xff0c;对于手机的各种软件也是备受用户的喜爱&#xff0c;社区养老保险系统小程序被用户普遍使用&#xff0c;为方…...

云原生玩法三问:构建自定义开发环境

云原生玩法三问&#xff1a;构建自定义开发环境 引言 临时运维一个古董项目&#xff0c;无文档&#xff0c;无环境&#xff0c;无交接人&#xff0c;俗称三无。 运行设备的环境老&#xff0c;本地环境版本高&#xff0c;ssh不过去。正好最近对 腾讯出品的云原生 cnb 感兴趣&…...

Redis:现代应用开发的高效内存数据存储利器

一、Redis的起源与发展 Redis最初由意大利程序员Salvatore Sanfilippo在2009年开发&#xff0c;其初衷是为了满足他自己的一个项目需求&#xff0c;即需要一个高性能的键值存储系统来解决传统数据库在高并发场景下的性能瓶颈。随着项目的开源&#xff0c;Redis凭借其简单易用、…...

计算机基础知识解析:从应用到架构的全面拆解

目录 前言 1、 计算机的应用领域&#xff1a;无处不在的数字助手 2、 计算机的进化史&#xff1a;从算盘到量子计算 3、计算机的分类&#xff1a;不止 “台式机和笔记本” 4、计算机的组件&#xff1a;硬件与软件的协同 4.1 硬件&#xff1a;五大核心部件 4.2 软件&#…...