当前位置: 首页 > news >正文

冯诺依曼模型

只要我们学习计算机操作系统,就离不开对冯诺依曼体系结构。因为我们常见的计算机,如笔记本。我们不常见的计算机,如服务器,大部分都遵守冯诺依曼体系。

1.什么是冯诺依曼模型呢?

如上图所示,冯诺依曼模型由五大部分组成:输入设备、控制器、运算器、存储器、输出设备

2.五大组成部分:

控制器(Control Unit):从内存中读取指令、翻译指令、分析指令、然后根据指令的内存向有关部件发送控制命令,控制相关部件执行指令包含的操作。

运算器(ALU,Arithmetic Logic Unit):处理数据,完成各种算术运算和逻辑运算。

存储器(Memory):存储数据(内存)

输入设备(Input):鼠标、键盘、触控板等

输出设备(Output):显示器、打印机等

输入输出设备好理解,存储器如何区分内存和外存的区别呢?

给电脑断电以后,数据还在的存储区就是外存,也就是磁盘。如果数据不在,那说明该存储区就是内存。

而控制器就相当于大脑,给身体各个部位下达各种指令,运算器就相当于我们的手,直接干活的部位。控制器和运算器集也是CPU最核心的部件。

在冯诺依曼模型中,输入输出设备不会和CPU直接打交道,而是间接通过内存使CPU处理

3.为什么要在CPU和外设之间要存在内存呢?

首先我们要先明白计算机组成原理的存储器金字塔模型

我们可以看到,CPU中寄存器的读取速度是最快的,体积是最小的,磁盘等外设的速度是最慢的,体积是最大的,并且两者的速度差太大!以至于,如果CPU直接在硬盘设备读取写入数据,那么我们CPU大部分的时间都在等待。所以,为了减缓这种差距,我们在CPU和硬盘之间引入了内存。

内存的特点:存储容量和读取写入数据的速度都介于CPU寄存器和硬盘之间,由于有比寄存器较大的容量,我们可以提前往内存区域存入“可能被读取的数据”,也就是预装数据,这样一来,CPU就不会傻傻等硬盘写入数据,而是直接到内存中读取,并且,内存的速度也不慢(相比于硬盘等外设)。

这样一来,有了内存这个缓冲地带,计算机的整体计算效率就会得到提高。

4.冯诺依曼模型发明的意义

冯.诺依曼结构消除了原始计算机体系中,只能依靠硬件控制程序的状况(程序作为控制器的一部分,作为硬件存在),将程序编码存储在存储器中,实现了可编程的计算机功能,实现了硬件设计和程序设计的分离,大大促进了计算机的发展

5.分析QQ发消息的数据流动过程(结合冯诺依曼模型)

用户A给用户B用QQ发送消息

相关文章:

冯诺依曼模型

只要我们学习计算机操作系统,就离不开对冯诺依曼体系结构。因为我们常见的计算机,如笔记本。我们不常见的计算机,如服务器,大部分都遵守冯诺依曼体系。 1.什么是冯诺依曼模型呢? 如上图所示,冯诺依曼模型由…...

高低拖延个体的任务决策及执行差异

高低拖延个体的任务决策及执行差异 摘要 拖延行为普遍存在,且影响着许多人的工作.学习和生活。已有的许多研究发现拖延个体明知自己需要尽快完成某项任务,但行动上却迟迟无法付诸实践,表现出一种知行不- -”的倾向.这种倾向是否在高低拖延特质者之间存…...

数据分析Pandas专栏---第十三章<Pandas训练题(初)>

前言: 写这篇是为了弄一个富有挑战性的Pandas练习题库,涵盖了许多常见和实用的数据处理问题。通过解决这些练习,能够深入了解Pandas提供的关键功能,掌握有效处理数据的技巧和方法。 练习题库涵盖了选择特定列并创建新DataFrame、对DataFrame进…...

Delete `␍`eslint(prettier/prettier) 错误的解决方案

最近开始一个新的项目,由他人构建,clone下来后,发现页面每行都有黄色的波浪线的提示:Delete ␍eslint(prettier/prettier) ,尝试了很多方法不能解决,最后选择关闭Prettier: 在.eslintrc.js文件…...

第3周 Python字典、集合刷题

第3周 Python字典、集合刷题 单击题目,直接跳转到页面刷题,一周后公布答案。 B2125:最高分数的学生姓名28:返回字典的键值75:字符串转字典77:映射字符串中的字母87:按条件过滤字典B3632&#…...

文字校对的首选——爱校对:用户真实反馈汇编

在今日快节奏、高标准的工作环境下,准确与效率成为了每位专业人士追求的双重目标。不论是在政府机构、学术领域、企业界,还是在自由职业者的行列中,我们都面临着同一个挑战:如何在保持工作速度的同时,确保每一份文档的…...

Llama-3即将发布:Meta公布其庞大的AI算力集群

Meta,这家全球科技巨头,再次以其在人工智能(AI)领域的雄心壮志震惊了世界。3月13日,公司在其官方网站上宣布了两个全新的24K H100 GPU集群,这些集群专为训练其大型模型Llama-3而设计,总计拥有高…...

【JAVA】Date、LocalDate、LocalDateTime 详解,实践应用

Date、LocalDate、LocalDateTime 详解,实践应用 一、Date、LocalDate 简介1、 java.util.Date:2、 java.time.LocalDateTime:3、 java.time.LocalDate: 二、输出格式1、使用 java.util.Date 的示例代码如下:2、使用 ja…...

分布式链路追踪(一)SkyWalking(1)介绍与安装

一、介绍 1、简介: 2、组成 以6.5.0为例,该版本下Skywalking主要分为oap、webapp和agent三部分,oap和webapp分别用于汇总数据和展示,这两块共同组成了Skywalking的平台;agent是探针,部署在需要收集数据的…...

蓝桥杯历年真题省赛之 2016年 第七届 生日蜡烛

一、题目 生日蜡烛 某君从某年开始每年都举办一次生日party,并且每次都要吹熄与年龄相同根数的蜡烛。 现在算起来,他一共吹熄了236根蜡烛。 请问,他从多少岁开始过生日party的? 请填写他开始过生日party的年龄数。 注意&…...

SCAU 8580 合并链表

8580 合并链表 时间限制:1000MS 代码长度限制:10KB 提交次数:3724 通过次数:2077 题型: 编程题 语言: G;GCC Description 线性链表的基本操作如下&#xff1a; #include<stdio.h> #include<malloc.h> #define ERROR 0 #define OK 1 #define ElemType inttyped…...

Docker安装Gitlab

下载镜像 直接下载最新版&#xff0c;比较大有2.36G docker pull gitlab/gitlab-ce创建数据存放的目录位置 按自己习惯位置创建目录 mkdir -p /usr/local/docker/docker_gitlab编写docker-compose.yml 在上面创建的挂载目录里面&#xff08;/usr/local/docker/docker_gitl…...

浅淡 C++ 与 C++ 入门

我们知道&#xff0c;C语言是结构化和模块化的语言&#xff0c;适用于较小规模的程序。而当解决复杂问题&#xff0c;需要高度抽象和建模时&#xff0c;C语言则不合适&#xff0c;而C正是在C的基础之上&#xff0c;容纳进去了面向对象编程思想&#xff0c;并增加了许多有用的库…...

学习和认知的四个阶段,以及学习方法分享

本文分享学习的四个不同的阶段&#xff0c;以及分享个人的一些学习方法。 一、学习认知的四个阶段 我们在学习的过程中&#xff0c;总会经历这几个阶段&#xff1a; 第一阶段&#xff1a;不知道自己不知道&#xff1b; 第二阶段&#xff1a;知道自己不知道&#xff1b; 第三…...

Python编程从入门到实践中的一些误区

1.num 使用num时python报错&#xff0c;后来查过后才知道是因为python不支持自增或自减&#xff0c;可以用1。 2.字符串和非字符串连接 要先将非字符串转换为字符串类型之后才能连接 print&#xff08;2int&#xff08;‘2’&#xff09;&#xff09;#4 3.关键字参数必须在未…...

Kanebo HITECLOTH 高科技擦镜布介绍

Kanebo HITECLOTH&#xff0c;这款由日本KBSeiren公司制造的高科技擦镜布&#xff0c;以其卓越的清洁能力和超柔软的布质&#xff0c;成为了市场上备受瞩目的产品。 材质与特性 HITECLOTH采用0.1旦尼尔特级高级微纤维制造&#xff0c;质地细致、坚韧、不起颗粒。这种纤维的特…...

政务云安全风险分析与解决思路探讨

1.1概述 为了掌握某市政务网站的网络安全整体情况&#xff0c;在相关监管机构授权后&#xff0c;我们组织人员抽取了某市78个政务网站进行安全扫描&#xff0c;通过安全扫描&#xff0c;对该市政务网站的整体安全情况进行预估。 1.2工具扫描结果 本次利用漏洞扫描服务VSS共扫…...

Linux tcpdump抓包转Wireshark 分析

简介 tcpdump 是Linux系统下的一个强大的命令&#xff0c;可以将网络中传送的数据包完全截获下来提供分析。它支持针对网络层、协议、主机、网络或端口的过滤&#xff0c;本文将展示如何使用 tcpdump 抓包&#xff0c;以及如何用 tcpdump 和 wireshark 分析网络流量 tcpdump指…...

【Spring高级】Aware与InitializingBean接口

目录 Aware接口概述为什么需要Aware接口 InitializingBean接口Autoware失效分析 Aware接口 概述 在Spring框架中&#xff0c;Aware 接口是一种常用的设计模式&#xff0c;用于允许bean在初始化时感知&#xff08;或获取&#xff09;Spring容器中的某些资源或环境信息。这些接…...

打造你的HTML5打地鼠游戏:零基础入门教程

&#x1f31f; 前言 欢迎来到我的技术小宇宙&#xff01;&#x1f30c; 这里不仅是我记录技术点滴的后花园&#xff0c;也是我分享学习心得和项目经验的乐园。&#x1f4da; 无论你是技术小白还是资深大牛&#xff0c;这里总有一些内容能触动你的好奇心。&#x1f50d; &#x…...

深入剖析AI大模型:大模型时代的 Prompt 工程全解析

今天聊的内容&#xff0c;我认为是AI开发里面非常重要的内容。它在AI开发里无处不在&#xff0c;当你对 AI 助手说 "用李白的风格写一首关于人工智能的诗"&#xff0c;或者让翻译模型 "将这段合同翻译成商务日语" 时&#xff0c;输入的这句话就是 Prompt。…...

pam_env.so模块配置解析

在PAM&#xff08;Pluggable Authentication Modules&#xff09;配置中&#xff0c; /etc/pam.d/su 文件相关配置含义如下&#xff1a; 配置解析 auth required pam_env.so1. 字段分解 字段值说明模块类型auth认证类模块&#xff0c;负责验证用户身份&am…...

将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?

Otsu 是一种自动阈值化方法&#xff0c;用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理&#xff0c;能够自动确定一个阈值&#xff0c;将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...

基于数字孪生的水厂可视化平台建设:架构与实践

分享大纲&#xff1a; 1、数字孪生水厂可视化平台建设背景 2、数字孪生水厂可视化平台建设架构 3、数字孪生水厂可视化平台建设成效 近几年&#xff0c;数字孪生水厂的建设开展的如火如荼。作为提升水厂管理效率、优化资源的调度手段&#xff0c;基于数字孪生的水厂可视化平台的…...

OpenLayers 分屏对比(地图联动)

注&#xff1a;当前使用的是 ol 5.3.0 版本&#xff0c;天地图使用的key请到天地图官网申请&#xff0c;并替换为自己的key 地图分屏对比在WebGIS开发中是很常见的功能&#xff0c;和卷帘图层不一样的是&#xff0c;分屏对比是在各个地图中添加相同或者不同的图层进行对比查看。…...

Python 包管理器 uv 介绍

Python 包管理器 uv 全面介绍 uv 是由 Astral&#xff08;热门工具 Ruff 的开发者&#xff09;推出的下一代高性能 Python 包管理器和构建工具&#xff0c;用 Rust 编写。它旨在解决传统工具&#xff08;如 pip、virtualenv、pip-tools&#xff09;的性能瓶颈&#xff0c;同时…...

python报错No module named ‘tensorflow.keras‘

是由于不同版本的tensorflow下的keras所在的路径不同&#xff0c;结合所安装的tensorflow的目录结构修改from语句即可。 原语句&#xff1a; from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后&#xff1a; from tensorflow.python.keras.lay…...

宇树科技,改名了!

提到国内具身智能和机器人领域的代表企业&#xff0c;那宇树科技&#xff08;Unitree&#xff09;必须名列其榜。 最近&#xff0c;宇树科技的一项新变动消息在业界引发了不少关注和讨论&#xff0c;即&#xff1a; 宇树向其合作伙伴发布了一封公司名称变更函称&#xff0c;因…...

ArcPy扩展模块的使用(3)

管理工程项目 arcpy.mp模块允许用户管理布局、地图、报表、文件夹连接、视图等工程项目。例如&#xff0c;可以更新、修复或替换图层数据源&#xff0c;修改图层的符号系统&#xff0c;甚至自动在线执行共享要托管在组织中的工程项。 以下代码展示了如何更新图层的数据源&…...

内窥镜检查中基于提示的息肉分割|文献速递-深度学习医疗AI最新文献

Title 题目 Prompt-based polyp segmentation during endoscopy 内窥镜检查中基于提示的息肉分割 01 文献速递介绍 以下是对这段英文内容的中文翻译&#xff1a; ### 胃肠道癌症的发病率呈上升趋势&#xff0c;且有年轻化倾向&#xff08;Bray等人&#xff0c;2018&#x…...