当前位置: 首页 > news >正文

为什么要用scrapy爬虫库?而不是纯python进行爬虫?

为什么要用scrapy爬虫库?而不是纯python进行爬虫?

      • Scrapy的优点
      • Scrapy节省的工作
      • 使用纯Python编写爬虫的不足

Scrapy是一个使用Python编写的开源和协作的web爬虫框架,它被设计用于爬取网页数据并从中提取结构化数据。Scrapy的强大之处在于其广泛的功能和灵活性,可以让开发者高效地构建复杂的爬虫。下面是Scrapy的一些优点,以及它帮我们节省的工作和使用纯Python编写爬虫的潜在不足之处。

在这里插入图片描述

Scrapy的优点

  1. 内置的项目结构:Scrapy提供了一个清晰、易于管理的项目结构,这让开发、测试和部署爬虫变得更加简单和高效。
  2. 强大的选择器:它内置了对XPath和CSS选择器的支持,让提取数据变得非常简单和直观。
  3. 中间件和插件系统:Scrapy有一个灵活的中间件和插件系统,允许开发者自定义和扩展框架的功能,例如处理请求、响应、项目管道等。
  4. 内置的并发处理:Scrapy使用Twisted异步网络框架来处理网络通信,能够实现高效的并发请求,显著提高爬虫的抓取效率。
  5. 强大的抓取控制:提供了强大的抓取控制功能,包括自动重试、数据下载延迟、遵守robots.txt协议等。
  6. 易于扩展:可以轻松添加新的功能,如扩展项、管道和中间件。
  7. 数据导出:Scrapy可以轻松将抓取的数据导出到多种格式,如CSV、JSON、XML等。

Scrapy节省的工作

  • 自动化请求调度和处理:Scrapy自动处理请求的发送、接收以及回调函数的调用,无需手动管理网络连接和数据流。
  • 错误处理和重试机制:自动处理网络请求的错误,并且可以配置重试机制,降低临时网络问题对爬虫的影响。
  • 遵循robots.txt策略:Scrapy可以配置为自动识别并遵守目标网站的robots.txt文件,减少手动检查的需要。
  • 数据提取和处理的便利性:提供了强大的工具来提取和处理数据,减少了编写解析代码的复杂度。
  • 高级功能的实现:如Cookies和Session的管理、用户代理的设置等,这在使用纯Python实现时可能需要大量的工作。

使用纯Python编写爬虫的不足

  • 开发效率:不使用Scrapy等框架,开发同等功能的爬虫通常需要更多的时间和代码。
  • 错误处理和稳定性:需要手动实现错误处理和重试逻辑,这可能导致代码更加复杂和难以维护。
  • 并发处理:实现高效的并发或异步请求处理可能相对困难,需要对异步编程有深入的理解。
  • 功能丰富性:自己编写可能难以快速实现Scrapy提供的一些高级功能,如中间件、信号等。

总的来说,Scrapy提供了一个高效、灵活且功能丰富的环境,大大减少了开发高性能爬虫所需的工作量。虽然使用纯Python也能实现相同的功能,但往往需要更多的时间和精力去处理底层的细节问题。

相关文章:

为什么要用scrapy爬虫库?而不是纯python进行爬虫?

为什么要用scrapy爬虫库?而不是纯python进行爬虫? Scrapy的优点Scrapy节省的工作使用纯Python编写爬虫的不足 Scrapy是一个使用Python编写的开源和协作的web爬虫框架,它被设计用于爬取网页数据并从中提取结构化数据。Scrapy的强大之处在于其广…...

C:数据结构王道

初始化顺序表(顺序表中元素为整型),里边的元素是1,2,3,然后通过scanf读取一个元素(假如插入的是6),插入到第2个位置,打印输出顺序表,每个元素占3个空格,格式为…...

Compose UI 之 Buttons 按钮 IconButtons 图标按钮

Buttons 按钮 Android Compose UI 库中的 Button 和 IconButton 是两种常用的组件,它们各自具有一些独特的特点。 Button 的特点: 可点击性:Button 是一个可点击的组件,通常用于触发某个操作或事件。文本内容:Button 通常包含文本内容,用于描述按钮的功能或操作。自定义…...

吴恩达机器学习笔记 二十一 迁移学习 预训练

迁移学习(transfer learning):直接把神经网络拿来,前面的参数可以直接用,把最后一层改了。 两种训练参数的方式: 1.只训练输出层的参数 2.训练所有参数 当只有一个小数据集的时候,第一种方法…...

Python中Pandas常用函数及案例详解

Pandas是一个强大的Python数据分析工具库,它为Python提供了快速、灵活且表达能力强的数据结构,旨在使“关系”或“标签”数据的操作既简单又直观。Pandas的核心数据结构是DataFrame,它是一个二维标签化数据结构,可以看作是一个表格…...

VR全景看房:超越传统的看房方式

近年来,新兴技术不断涌出,例如大数据、VR全景、人工智能、元宇宙等。随着科技不断发展,VR全景技术在房地产行业中的应用也是越发广泛,逐渐超越了传统的看房方式。今天,就让我们一起来深入探讨一下VR全景技术在VR看房中…...

pip 配置镜像加速安装

在使用pip安装Python第三方库时,默认是使用pip官网的非常慢,可通过配置国内镜像源加速下载速度,以下是如何使用国内镜像源安装Python库的两种常见方式: 临时使用镜像源安装 如果你只是想临时使用某个镜像源安装单个或几个库&…...

LUA语法复习总结

文章目录 简记变量数据类型运算符算术运算符关系运算符逻辑运算符杂项运算符 列表(表)表格操作表连接插入和删除排序表 模块元表__index 元方法实例 总结__newindex 元方法实例实例 为表添加操作符实例 __call 元方法实例 __tostring 元方法实例 简记 lua下标从1开始迭代器pai…...

某赛通电子文档安全管理系统 DecryptApplication 任意文件读取漏洞(2024年3月发布)

漏洞简介 某赛通电子文档安全管理系统 DecryptApplication 接口处任意文件读取漏洞,未经身份验证的攻击者利用此漏洞获取系统内部敏感文件信息,导致系统处于极不安全的状态。 漏洞等级高危影响版本*漏洞类型任意文件读取影响范围>1W 产品简介 …...

Mac-自动操作 实现双击即可执行shell脚本

背景 在Mac上运行shell脚本,总是需要开启终端窗口执行,比较麻烦 方案 使用Mac上自带的“自动操作”程序,将shell脚本打包成可运行程序(.app后缀),实现双击打开即可执行shell脚本 实现细节 找到Mac上 应用程序中的 自动操作&am…...

人工智能入门之旅:从基础知识到实战应用(六)

一、人工智能学习之路总结 人工智能学习的关键点与挑战可以总结如下: 关键点: 理论基础: 理解机器学习、深度学习等人工智能的基本原理和算法是学习的基础,包括线性代数、概率统计、微积分等数学知识,以及神经网络、…...

Debezium日常分享系列之:Debezium2.5稳定版本之Mysql连接器的工作原理

Debezium日常分享系列之:Debezium2.5稳定版本之Mysql连接器的工作原理 一、Mysql连接器的工作原理1.支持的 MySQL 拓扑2.MariaDB 支持3.Schema history topic4.Schema change topic5.Snapshots1)使用全局读锁的初始快照2)Debezium MySQL 连接…...

Linux服务器,使用ssh登录时越来越慢,有时甚至出现超时的现象,解决方案

一台Linux服务器,使用ssh登录时越来越慢,有时甚至出现超时的现象。一直以为这不算问题,但是有时候登录时间长的让人无法接受,查了一下,这“ssh登录慢”还真的是个问题,解决方案如下: 客户端进行…...

GPT-SoVITS开源音色克隆框架的训练与调试

GPT-SoVITS开源框架的报错与调试 遇到的问题解决办法 GPT-SoVITS是一款创新的跨语言音色克隆工具,同时也是一个非常棒的少样本中文声音克隆项目。 它是是一个开源的TTS项目,只需要1分钟的音频文件就可以克隆声音,支持将汉语、英语、日语三种…...

C#十大排序总结

一、冒泡排序 传送门 一、C#冒泡排序算法-CSDN博客 未完待续。。。...

Vue首屏优化方案

在Vue项目中,引入到工程中的所有js、css文件,编译时都会被打包进vendor.js,浏览器在加载该文件之后才能开始显示首屏。若是引入的库众多,那么vendor.js文件体积将会相当的大,影响首屏的体验。可以看个例子:…...

SpringBoot使用log4j2将日志记录到文件及自定义数据库

目录 一、环境说明 二、进行配置 1、pom.xml 2、log4j2.xml 3、CustomDataSourceProperties 4、ConfigReader 5、ConnectionFactory 连接工厂类,用于管理数据库连接 三、进行简单测试配置 1、LogUtils 2、LoginUserInfoHelper 3、LoginLogUtils 4、…...

vue+elementUI用户修改密码的前端验证

用户登录后修改密码,密码需要一定的验证规则。旧密码后端验证是否正确;前端验证新密码的规范性,新密码规范为:6-16位,至少含数字/字母/特殊字符中的两种;确认密码只需要验证与新密码是否一致; 弹…...

微信小程序问题定位——sourcemap文件

使用sourceMap在微信小程序中进行线上问题定位,主要可以通过以下步骤实现: 下载微信开发者工具首先,确保已经安装了微信开发者工具,这是进行小程序开发和调试的基础。登录微信公众平台并下载sourceMap文件:登录微信小…...

Photoshop_00000

简介 Adobe官网:https://www.adobe.com Adobe中文官网:https://www.adobe.com/cn Adobe中国服务商:http://adobe.sxbyu.cn/adobe/adobe_index?flag800&bd_vid5593893117402635109# Photoshop安装 基础操作 文件的打开和新建 打开文…...

模型参数、模型存储精度、参数与显存

模型参数量衡量单位 M:百万(Million) B:十亿(Billion) 1 B 1000 M 1B 1000M 1B1000M 参数存储精度 模型参数是固定的,但是一个参数所表示多少字节不一定,需要看这个参数以什么…...

以下是对华为 HarmonyOS NETX 5属性动画(ArkTS)文档的结构化整理,通过层级标题、表格和代码块提升可读性:

一、属性动画概述NETX 作用:实现组件通用属性的渐变过渡效果,提升用户体验。支持属性:width、height、backgroundColor、opacity、scale、rotate、translate等。注意事项: 布局类属性(如宽高)变化时&#…...

基于Uniapp开发HarmonyOS 5.0旅游应用技术实践

一、技术选型背景 1.跨平台优势 Uniapp采用Vue.js框架,支持"一次开发,多端部署",可同步生成HarmonyOS、iOS、Android等多平台应用。 2.鸿蒙特性融合 HarmonyOS 5.0的分布式能力与原子化服务,为旅游应用带来&#xf…...

TRS收益互换:跨境资本流动的金融创新工具与系统化解决方案

一、TRS收益互换的本质与业务逻辑 (一)概念解析 TRS(Total Return Swap)收益互换是一种金融衍生工具,指交易双方约定在未来一定期限内,基于特定资产或指数的表现进行现金流交换的协议。其核心特征包括&am…...

【AI学习】三、AI算法中的向量

在人工智能(AI)算法中,向量(Vector)是一种将现实世界中的数据(如图像、文本、音频等)转化为计算机可处理的数值型特征表示的工具。它是连接人类认知(如语义、视觉特征)与…...

是否存在路径(FIFOBB算法)

题目描述 一个具有 n 个顶点e条边的无向图,该图顶点的编号依次为0到n-1且不存在顶点与自身相连的边。请使用FIFOBB算法编写程序,确定是否存在从顶点 source到顶点 destination的路径。 输入 第一行两个整数,分别表示n 和 e 的值(1…...

使用 SymPy 进行向量和矩阵的高级操作

在科学计算和工程领域,向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能,能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作,并通过具体…...

Linux 中如何提取压缩文件 ?

Linux 是一种流行的开源操作系统,它提供了许多工具来管理、压缩和解压缩文件。压缩文件有助于节省存储空间,使数据传输更快。本指南将向您展示如何在 Linux 中提取不同类型的压缩文件。 1. Unpacking ZIP Files ZIP 文件是非常常见的,要在 …...

nnUNet V2修改网络——暴力替换网络为UNet++

更换前,要用nnUNet V2跑通所用数据集,证明nnUNet V2、数据集、运行环境等没有问题 阅读nnU-Net V2 的 U-Net结构,初步了解要修改的网络,知己知彼,修改起来才能游刃有余。 U-Net存在两个局限,一是网络的最佳深度因应用场景而异,这取决于任务的难度和可用于训练的标注数…...

小木的算法日记-多叉树的递归/层序遍历

🌲 从二叉树到森林:一文彻底搞懂多叉树遍历的艺术 🚀 引言 你好,未来的算法大神! 在数据结构的世界里,“树”无疑是最核心、最迷人的概念之一。我们中的大多数人都是从 二叉树 开始入门的,它…...