当前位置: 首页 > news >正文

【进阶五】Python实现SDVRP(需求拆分)常见求解算法——蚁群算法(ACO)

基于python语言,采用经典遗传算法(ACO)对 需求拆分车辆路径规划问题(SDVRP) 进行求解。

目录

  • 往期优质资源
  • 1. 适用场景
  • 2. 代码调整
  • 3. 求解结果
  • 4. 代码片段
  • 参考

往期优质资源


经过一年多的创作,目前已经成熟的代码列举如下,如有需求可私信联系,表明需要的 问题与算法,原创不宜,有偿获取。
VRP问题GAACOALNSDEDPSOQDPSOTSSA
CVRP
VRPTW
MDVRP
MDHVRP
MDHVRPTW
SDVRP

1. 适用场景

  • 求解CVRP
  • 车辆类型单一
  • 车辆容量小于部分需求节点需求
  • 单一车辆基地

2. 代码调整


与CVRP问题相比,SDVRP问题允许客户需求大于车辆容量。为了使得每个客户的需求得到满足,必须派遣一辆或多辆车辆对客户进行服务,也就是需要对客户的需求进行拆分。关于如何进行拆分一般有两种方式:

  • 先验拆分策略:提前制定策略对客户的需求(尤其是大于车辆容量的客户需求)进行分解,将SDVRP问题转化为CVRP问题
  • 过程拆分策略:在车辆服务过程中对客户需求进行动态拆分

本文采用文献[1]提出的先验分割策略,表述如下:

(1)20/10/5/1拆分规则

  • m20 =max{ m ∈ Z + ∪ { 0 } ∣ 0.20 Q m < = D i m\in Z^+ \cup \{0\} | 0.20Qm <= D_i mZ+{0}∣0.20Qm<=Di }
  • m10 =max{ m ∈ Z + ∪ { 0 } ∣ 0.10 Q m < = D i − 0.20 Q m 20 m\in Z^+ \cup \{0\} | 0.10Qm <= D_i-0.20Qm_{20}~ mZ+{0}∣0.10Qm<=Di0.20Qm20  }
  • m5 =max{ m ∈ Z + ∪ { 0 } ∣ 0.05 Q m < = D i − 0.20 Q m 20 − 0.10 Q m 10 m\in Z^+ \cup \{0\} | 0.05Qm <= D_i-0.20Qm_{20}-0.10Qm_{10} mZ+{0}∣0.05Qm<=Di0.20Qm200.10Qm10 }
  • m1 =max{ m ∈ Z + ∪ { 0 } ∣ 0.01 Q m < = D i − 0.20 Q m 20 − 0.10 Q m 10 − 0.05 Q m 5 m\in Z^+ \cup \{0\} | 0.01Qm <= D_i-0.20Qm_{20}-0.10Qm_{10}-0.05Qm_{5} mZ+{0}∣0.01Qm<=Di0.20Qm200.10Qm100.05Qm5 }

(2)25/10/5/1拆分规则

  • m25 =max{ m ∈ Z + ∪ { 0 } ∣ 0.25 Q m < = D i m\in Z^+ \cup \{0\} | 0.25Qm <= D_i mZ+{0}∣0.25Qm<=Di }
  • m10 =max{ m ∈ Z + ∪ { 0 } ∣ 0.10 Q m < = D i − 0.25 Q m 25 m\in Z^+ \cup \{0\} | 0.10Qm <= D_i-0.25Qm_{25}~ mZ+{0}∣0.10Qm<=Di0.25Qm25  }
  • m5 =max{ m ∈ Z + ∪ { 0 } ∣ 0.05 Q m < = D i − 0.25 Q m 25 − 0.10 Q m 10 m\in Z^+ \cup \{0\} | 0.05Qm <= D_i-0.25Qm_{25}-0.10Qm_{10} mZ+{0}∣0.05Qm<=Di0.25Qm250.10Qm10 }
  • m1 =max{ m ∈ Z + ∪ { 0 } ∣ 0.01 Q m < = D i − 0.25 Q m 25 − 0.10 Q m 10 − 0.05 Q m 5 m\in Z^+ \cup \{0\} | 0.01Qm <= D_i-0.25Qm_{25}-0.10Qm_{10}-0.05Qm_{5} mZ+{0}∣0.01Qm<=Di0.25Qm250.10Qm100.05Qm5 }

在实现过程中,对于需求超过车辆容量的客户必须进行需求拆分,而对于未超过车辆容量的客户可以拆分也可以不拆分,这里设置了参数比例进行限制。

3. 求解结果


(1)收敛曲线

在这里插入图片描述

(2)车辆路径

在这里插入图片描述

4. 代码片段


(1)数据结构

# 数据结构:解
class Sol():def __init__(self):self.node_no_seq = None # 节点id有序排列self.obj = None # 目标函数self.fitness = None  # 适应度self.route_list = None # 车辆路径集合self.route_distance_list = None  # 车辆路径长度集合
# 数据结构:网络节点
class Node():def __init__(self):self.id = 0 # 节点idself.x_coord = 0 # 节点平面横坐标self.y_coord = 0 # 节点平面纵坐标self.demand = 0 # 节点需求
# 数据结构:全局参数
class Model():def __init__(self):self.best_sol = None # 全局最优解self.demand_id_list = [] # 需求节点集合self.demand_dict = {}self.sol_list = [] # 解的集合self.depot = None # 车场节点self.number_of_demands = 0 # 需求节点数量self.vehicle_cap = 0 # 车辆最大容量self.distance_matrix = {} # 节点距离矩阵self.demand_id_list_ = [] # 经先验需求分割后的节点集合self.demand_dict_ = {} # 需求分割后的节点需求集合self.distance_matrix_ = {}  # 原始节点id间的距离矩阵self.mapping = {}  # 需求分割前后的节点对应关系self.split_rate = 0.5 # 控制需求分割的比例(需求超出车辆容量的除外)self.popsize = 100 # 种群规模self.alpha = 2 # 信息启发式因子self.beta = 3 # 期望启发式因子self.Q = 100 # 信息素总量self.rho = 0.5 # 信息素挥发因子self.tau = {} # 弧信息素集合self.tau0 = 100 # 路径初始信息素

(2)距离矩阵

# 初始化参数
def cal_distance_matrix(model):for i in model.demand_id_list:for j in model.demand_id_list:d=math.sqrt((model.demand_dict[i].x_coord-model.demand_dict[j].x_coord)**2+(model.demand_dict[i].y_coord-model.demand_dict[j].y_coord)**2)model.distance_matrix[i,j]=ddist = math.sqrt((model.demand_dict[i].x_coord - model.depot.x_coord) ** 2 + (model.demand_dict[i].y_coord - model.depot.y_coord) ** 2)model.distance_matrix[i, model.depot.id] = distmodel.distance_matrix[model.depot.id, i] = dist

(3)蚁群移动

# 蚂蚁移动
def movePosition(model):sol_list=[]local_sol=Sol()local_sol.obj=float('inf')for _ in range(model.popsize):#随机初始化蚂蚁为止node_no_seq=[random.randint(0,len(model.demand_id_list_)-1)]all_node_no_seq=copy.deepcopy(model.demand_id_list_)all_node_no_seq.remove(node_no_seq[-1])#确定下一个访问节点while len(all_node_no_seq)>0:next_node_no=searchNextNode(model,node_no_seq[-1],all_node_no_seq)node_no_seq.append(next_node_no)all_node_no_seq.remove(next_node_no)sol=Sol()sol.node_no_seq=node_no_seqsol.obj,sol.route_list,sol.route_distance=calObj(node_no_seq,model)sol_list.append(sol)if sol.obj < local_sol.obj:local_sol = copy.deepcopy(sol)model.sol_list=copy.deepcopy(sol_list)if local_sol.obj<model.best_sol.obj:model.best_sol=copy.deepcopy(local_sol)
# 搜索下一移动节点
def searchNextNode(model,current_node_no,SE_List):prob=np.zeros(len(SE_List))for i,node_no in enumerate(SE_List):eta=1/model.distance_matrix_[current_node_no,node_no] if model.distance_matrix_[current_node_no,node_no] else 0.0001tau=model.tau[current_node_no,node_no]prob[i]=((eta**model.alpha)*(tau**model.beta))#采用轮盘法选择下一个访问节点cumsumprob=(prob/sum(prob)).cumsum()cumsumprob -= np.random.rand()return SE_List[list(cumsumprob >= 0).index(True)]
# 更新路径信息素
def upateTau(model):rho=model.rhofor k in model.tau.keys():model.tau[k]=(1-rho)*model.tau[k]#根据解的node_no_seq属性更新路径信息素(TSP问题的解)for sol in model.sol_list:node_no_seq=sol.node_no_seqfor i in range(len(node_no_seq)-1):from_node_no=node_no_seq[i]to_node_no=node_no_seq[i+1]model.tau[from_node_no,to_node_no]+= model.Q/sol.objfor k in model.tau.keys():model.tau[k]= max(model.tau[k],0.000001)

参考

【1】 A novel approach to solve the split delivery vehicle routing problem

相关文章:

【进阶五】Python实现SDVRP(需求拆分)常见求解算法——蚁群算法(ACO)

基于python语言&#xff0c;采用经典遗传算法&#xff08;ACO&#xff09;对 需求拆分车辆路径规划问题&#xff08;SDVRP&#xff09; 进行求解。 目录 往期优质资源1. 适用场景2. 代码调整3. 求解结果4. 代码片段参考 往期优质资源 经过一年多的创作&#xff0c;目前已经成熟…...

php.exe运行时,提示缺少VCRUNTIME140.dll

php.exe运行时&#xff0c;提示缺少VCRUNTIME140.dll 下载地址 https://www.microsoft.com/zh-cn/download/details.aspx?id48145根据需要选择下载3.运行安装后&#xff0c;再次运行php.exe。...

Android垃圾回收机制

1.垃圾回收机制 垃圾回收&#xff0c;也叫GC(Garbage Collection)&#xff0c;指的是释放垃圾占用的空间&#xff0c;防止内存泄露。有效的使用可以使用的内存&#xff0c;对内存堆中已经死亡的或者长时间没有使用的对象进行清除和回收。 JVM的内存区域主要分为程序计数器、虚…...

深度学习专家学习计划

深度学习专家学习计划 一、学习背景与目标 作为一名有6年工作经验的Java开发人员,您已具备基本的编程能力和数据处理经验。现计划转岗至深度学习领域,成为深度学习专家。本计划将结合您的工作背景和现有知识,为您制定详细且精确的学习计划,帮助您逐步达到专家水平。 二、…...

关于Ubuntu虚拟机突然上不了网的问题

今天刚重新把Ubuntu虚拟机下回来准备大干一场&#xff0c;结果去吃饭回来虚拟机就上不去网了&#xff0c;具体体现为右上角没有网络的图标&#xff0c;下图是有网络的情况&#xff0c;废话不多说&#xff0c;直接给出解决方案&#xff1a;博客在此 我就是运行了这三行代码就成功…...

[mysql必备面试题]-InnoDB和MyISAM引擎的区别

InnoDB 是 MySQL 默认的事务型存储引擎&#xff0c;只有在需要它不支持的特性时&#xff0c;才考虑使用其它存储引擎。 实现了四个标准的隔离级别&#xff0c;默认级别是可重复读(REPEATABLE READ)。在可重复读隔离级别下&#xff0c;通过多版本并发控制(MVCC) 间隙锁(Next-K…...

android 播放rtsp流的三种方式,2024阿里Android高级面试题总结

使用SurfaceViewMediaPlayer <SurfaceView android:id“id/surface_view” android:layout_width“250dp” android:layout_height“250dp” app:layout_constraintRight_toRightOf“parent” app:layout_constraintTop_toTopOf“parent” /> private String uri …...

unity显示当前时间

1建立文本组件和一个空对象 2创建一个脚本并复制下面代码 using System.Collections; using System.Collections.Generic; using TMPro; using UnityEngine;public class showtime: MonoBehaviour {public TextMeshProUGUI time;private void Update(){string currentTime Sy…...

SDK报错(1)undefined reference to `f_mount‘

利用SDK读取sd卡时&#xff0c;添加了xilffs库&#xff0c;而且包含了ff.h头文件&#xff0c;还是对fat库的函数报错 网上有的说在ARM v7 gcc linker中添加xilffs的方法可以解决&#xff0c;但我试了没有用 最后在赛灵思论坛找到了一个解决方法&#xff0c;原文连接如下 在SDK…...

YOLOv8_pose-Openvino和ONNXRuntime推理【CPU】

纯检测系列&#xff1a; YOLOv5-Openvino和ONNXRuntime推理【CPU】 YOLOv6-Openvino和ONNXRuntime推理【CPU】 YOLOv8-Openvino和ONNXRuntime推理【CPU】 YOLOv7-Openvino和ONNXRuntime推理【CPU】 YOLOv9-Openvino和ONNXRuntime推理【CPU】 跟踪系列&#xff1a; YOLOv5/6/7-O…...

百科 | 光伏电站如何开展运维工作?

从目前太阳能光伏电站的运行管理工作实际经验看&#xff0c;要保证光伏发电系统安全、经济、高效运行&#xff0c;必须建立规范和有效的管理机制&#xff0c;特别是要加强电站的运行维护管理。 一、建立完善的技术文件管理体系 对每个电站都要建立全面完整的技术文件资料档案…...

监听抖音直播间的评论并实现存储

监听抖音直播间评论&#xff0c;主要是动态监听dom元素的变化&#xff0c;如果评论是图片类型的&#xff0c;获取alt的值 主要采用的是MutationObserver&#xff1a;https://developer.mozilla.org/zh-CN/docs/Web/API/MutationObserver index.js如下所示:function getPL() {…...

一体机电脑辐射超标整改

电脑一体机是目前台式机和笔记本电脑之间的一个新型的市场产物&#xff0c;它将主机部分、显示器部分整合到一起的新形态电脑&#xff0c;该产品的创新在于内部元件的高度集成。随着无线技术的发展&#xff0c;电脑一体机的键盘、鼠标与显示器可实现无线链接&#xff0c;机器只…...

重学SpringBoot3-路径匹配机制

更多SpringBoot3内容请关注我的专栏&#xff1a;《SpringBoot3》 期待您的点赞&#x1f44d;收藏⭐评论✍ 重学SpringBoot3-路径匹配机制 AntPathMatcherPathPatternParser 和 PathPattern演示AntPathMatcher 示例PathPattern 示例性能和精确度的提升 选择使用哪一种 在 Spring…...

【贪心算法】摆动序列

如果连续数字之间的差严格地在正数和负数之间交替&#xff0c;则数字序列称为 摆动序列 。第一个差&#xff08;如果存在的话&#xff09;可能是正数或负数。仅有一个元素或者含两个不等元素的序列也视作摆动序列。 例如&#xff0c; [1, 7, 4, 9, 2, 5] 是一个 摆动序列 &…...

Unload-labs

function checkFile() {var file document.getElementsByName(upload_file)[0].value;if (file null || file "") {alert("请选择要上传的文件!");return false;}//定义允许上传的文件类型var allow_ext ".jpg|.png|.gif";//提取上传文件的类…...

SRS-220VDC-4Z-10A静态中间继电器 额定电压DC220V 四副转换触点 JOSEF约瑟

系列型号&#xff1a; SRS-24VDC-4Z-8A静态中间继电器&#xff1b;SRS-24VDC-4Z-10A静态中间继电器&#xff1b; SRS-24VDC-4Z-16A静态中间继电器&#xff1b;SRS-24VAC-4Z-8A静态中间继电器&#xff1b; SRS-24VAC-4Z-10A静态中间继电器&#xff1b;SRS-24VAC-4Z-16A静态中…...

解决electron打包vue-element-admin项目页面无法跳转的问题

解决electron打包vue-element-admin项目页面无法跳转的问题 说明之前通过这个教程已经打包成功&#xff0c;但是发现进行账号密码登录后页面无法跳转的问题。现在已经解决&#xff0c;所以记录一下。 1、检查路由模式是否为hash模式&#xff0c;如果不是改成hash模式。 new Ro…...

Uniapp Vue2 image src动态绑定static目录下的图片

报错的static地址写法&#xff1a; this.url ../static/img.png this.url /static/img.png 正确的static地址写法&#xff1a; this.url /static/img.png 动态绑定 <image :src"url"></image>...

【UE5】动画混合空间的基本用法

项目资源文末百度网盘自取 什么是动画混合空间 混合空间分为两种: 通过一个数值控制通过两个数值控制 下面通过演示让大家更直观地了解 在Character文件夹中单击右键,选择动画(Animation),选择旧有的混合空间1D 然后选择骨骼&#xff08;动画是基于骨骼显示的,所以需要选择…...

用红黑树封装实现map和set

目录 1、map和set的底层 2、map与set中的key关键值 3、红黑树迭代器的实现。 1、操作 2、-- 操作 3、和!操作 4、在红黑树中封装迭代器 5、map和set对迭代器的封装 1、map map中[]的重载 2、set 1、map和set的底层 map和set都是基于红黑树实现的。红黑树是一种自平衡…...

【阿里云系列】-部署ACK集群的POD应用日志如何集成到日志服务(SLS)中

介绍 我们在实际部署应用到阿里云的ACK集群后&#xff0c;由于后期应用服务的持续维护诉求可能需要跟踪排查问题&#xff0c;此时就要具备将应用的历史日志存档便于后期排查问题 处理方式 为了解决以上的普遍需求&#xff0c;需要将ACK中的应用日志采集到SLS的Logstore中,然…...

Vue中给当前页面传递参数并重新加载,vue使用this.$router.push跳转页面,给跳转过去的页面传参不一致时重新加载

vue通过this.$router.push给url传参&#xff0c;改变url但是当前页面不会自动刷新 跳转页面代码 this.$router.push({name: allbusiness,query: {pw_id: item.id} });1.使用 watch 监听 $route 对象的变化&#xff0c;当路由发生变化时重新加载数据或执行其他操作。 2.利用路…...

【扩散模型(一)】综述:扩散模型在文本生成领域应用

一、论文信息 1 标题 Diffusion models in text generation: a survey 2 作者 Qiuhua Yi, Xiangfan Chen, Chenwei Zhang, Zehai Zhou, Linan Zhu, Xiangjie Kong 3 研究机构 1 College of Computer Science and Technology, Zhejiang University of Technology, HangZho…...

K8S Pod

基本概念 Pod是K8S中非常重要的概念之一&#xff0c;是整个K8S架构的基础和核心。Pod是K8S调度的最小单位&#xff0c;是一个不可拆分的独立个体&#xff0c;K8S将多个业务上相关联的容器&#xff08;Docker容器&#xff09;合并到一起&#xff0c;组合成一个Pod&#xff0c;这…...

反向传播(backward propagation,BP) python实现

BP算法就是反向传播&#xff0c;要输入的数据经过一个前向传播会得到一个输出&#xff0c;但是由于权重的原因&#xff0c;所以其输出会和你想要的输出有差距&#xff0c;这个时候就需要进行反向传播&#xff0c;利用梯度下降&#xff0c;对所有的权重进行更新&#xff0c;这样…...

简单算命脚本

效果展示 文件内容 main.py文件 import json import random import time# 别挂配置数据 gua_data_path "data.json"# 别卦数据 gua_data_map {} fake_delay 10# 读取别卦数据 def init_gua_data(json_path):with open(gua_data_path, r, encodingutf8) as fp:gl…...

Lua-掌握Lua语言基础1

Lua是一种轻量级的脚本语言&#xff0c;广泛应用于游戏开发、嵌入式系统和其他领域。下面是Lua语言基础的介绍&#xff1a; 数据类型&#xff1a;Lua支持基本的数据类型&#xff0c;包括nil、boolean、number、string和table。其中&#xff0c;table是一种关联数组&#xff0c;…...

python-0003-pycharm开发虚拟环境中的项目

前言 在虚拟环境中创建好了python项目&#xff0c;使用pycharm进行开发 打开项目 使用pycharm打开项目 设置虚拟环境的解释器 File–>Settings–>Project(项目名)–>Python Interpreter–>添加解释器–>添加已经存在的解释器–>选择虚拟环境的解释器 …...

修改 MySQL update_time 默认值的坑

由于按规范需要对 update_time 字段需要对它做默认值的设置 现在有一个原始的表是这样的 CREATE TABLE test_up (id bigint(20) unsigned NOT NULL AUTO_INCREMENT COMMENT 主键id,update_time datetime default null COMMENT 操作时间,PRIMARY KEY (id) ) ENGINEInnoDB DEF…...