Python 导入Excel三维坐标数据 生成三维曲面地形图(面) 4-2、线条平滑曲面(原始颜色)但不去除无效点
环境和包:
环境
python:python-3.12.0-amd64包:
matplotlib 3.8.2
pandas 2.1.4
openpyxl 3.1.2
scipy 1.12.0
代码:
import pandas as pd
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from scipy.interpolate import griddata
from matplotlib.colors import ListedColormap
import numpy as np
from matplotlib import pyplot as plt
from matplotlib import font_manager#解决中文乱码问题
plt.rcParams['font.sans-serif']=['kaiti']
plt.rcParams["axes.unicode_minus"]=False #解决图像中的"-"负号的乱码问题# 创建自定义颜色调色板
def create_custom_colormap(name, colors):colors = np.array(colors)cmap = plt.get_cmap(name)cmap.set_over(colors[-1])cmap.set_under(colors[0])cmap.set_bad(colors[0])return cmap# 定义一些颜色
#colors = ['red', 'blue', 'green', 'yellow', 'purple']
colors = ['red', 'orange', 'yellow', 'green', 'blue']
# 创建自定义颜色映射对象
my_colormap = create_custom_colormap('turbo_r', colors)
# 读取Excel文件
df = pd.read_excel('煤仓模拟参数41.xlsx')
#df = pd.read_excel('煤仓模拟参数222.xlsx')
#print('数量:',df)
# 提取x、y、z数据
x = df['X轴'].values
y = df['Y轴'].values
z = df['Z轴'].values# 创建三维坐标轴对象
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')# 使用平滑曲面插值方法创建地形图(假设使用样条插值方法)
#smoothed_terrain = ax.scatter(x, y, z, cmap='viridis')# 使用griddata函数进行插值,这里使用最近邻插值法,你也可以选择其他的插值方法
# 插值后的数据用于绘制平滑曲面地形图
grid_x, grid_y = np.mgrid[min(x):max(x):100j, min(y):max(y):100j]
grid_z = griddata((x, y), z, (grid_x, grid_y), method='cubic')
# 使用平滑曲面插值后的数据绘制地形图
# 绘制地形图(camp:coolwarm,viridis,plasma,inferno,magma,cividis,rainbow)
cmap = ListedColormap(['blue', 'green', 'yellow', 'orange','Red'])
ax.contourf(grid_x, grid_y, grid_z, levels=300, cmap=my_colormap)
#ax.contourf(grid_x, grid_y, grid_z, levels=60, cmap='viridis')
ax.grid(True)# 设置x轴的刻度间隔
ax.set_xticks(np.arange(-7500, 7500, 2500)) # 从-7500到7500,步长为2500# 设置y轴的刻度间隔
ax.set_yticks(np.arange(-7500, 7500, 2500)) # 从-7500到7500,步长为2500# 设置z轴的刻度间隔
ax.set_zticks(np.arange(10000, 31000, 2500)) # 从10000到31000,步长为2500#计算面积,容积,最高料位等
# 查找同一列'Column A'中相同的值对应的'Column B'中的最小值并求平均值
#h = df.groupby('Y轴')['Z轴'].min().mean()-16452
h = df['Z轴'].mean()-16452#print(h)# 计算圆柱体的体积
#pi = np.pi
#V = np.pi * r**2 * h # 圆柱体体积公式:πr²h r 9000 h-16452 983.6 3000上下就是对的
#print(V)# 计算圆柱体的体积
r=9000
pi = np.pi
V = np.pi * r**2 * h # 圆柱体体积公式:πr²h r 9000 h-16452 983.6 3000上下就是对的
#print('V=',V)def mm3_to_m3(mm3):m3 = mm3 / (1000**3)return m3# 测试代码
mm3_value = V # 1立方米等于1000000立方毫米
m3_value = mm3_to_m3(mm3_value)
print(m3_value)m3_value_1=m3_value+983.6
print('体积=',m3_value_1)zl=1.5*m3_value_1
print('质量=',zl)VP=m3_value_1/6022.72#6022.72为总桶的总体积
print('容积=',VP)# 找到该列的最大值和最小值
max_value = df['Z轴'].max()
min_value = df['Z轴'].min()
h=h+16342
# 打印结果
print("最高料位=",max_value)
print("最低料位=",min_value)
print("平均料位=",h)
# 添加标题和坐标轴标签
ax.set_title('三维平滑曲面地形图--去除无效点(原始颜色)')
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')
# 在图形上添加文本
str = "体积="+np.array2string(m3_value_1)+"\n质量="+np.array2string(zl)+"\n容积=容积="+"{:.2%}".format(VP)+"\n最高料位="+np.array2string(max_value)+"\n最低料位="+np.array2string(min_value)+"\n平均料位="+np.array2string(h)
ax.text(-5000,-5000,10000,str)
ax.set_axis_off() # 关闭坐标轴
plt.show()
效果图:

资源下载(分享-->资源分享):
链接:https://pan.baidu.com/s/1UlP0lsma8OWchfV5kstEFQ
提取码:kdgr
相关文章:
Python 导入Excel三维坐标数据 生成三维曲面地形图(面) 4-2、线条平滑曲面(原始颜色)但不去除无效点
环境和包: 环境 python:python-3.12.0-amd64包: matplotlib 3.8.2 pandas 2.1.4 openpyxl 3.1.2 scipy 1.12.0 代码: import pandas as pd import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from scipy.interpolate import griddata fro…...
win10 + cpu + pycharm + mindspore
MindSpore是华为公司自研的最佳匹配昇腾AI处理器算力的全场景深度学习框架。 1、打开官网: MindSpore官网 2、选择以下选项: 3、创建conda 环境,这里python 选择3.9.0,也可以选择其他版本: conda create -c conda-…...
设计一个生产制造系统100问?
设计一个生产制造系统时,首先需要明确系统的目标和范围。生产制造系统的设计应该从产品需求和生产流程出发,结合现代科技手段,构建一个高效、智能、可持续的生产制造系统。 你的生产制造系统是针对哪种产品或产品类型设计的?系统需…...
LeetCode 面试经典150题 26.删除有序数组中的重复项
题目: 给你一个 非严格递增排列 的数组 nums ,请你 原地 删除重复出现的元素,使每个元素 只出现一次 ,返回删除后数组的新长度。元素的 相对顺序 应该保持 一致 。然后返回 nums 中唯一元素的个数。 考虑 nums 的唯一元素的数量…...
海豚调度系列之:集群部署(Cluster)
海豚调度系列之:集群部署Cluster 一、前置准备工作二、准备 DolphinScheduler 启动环境1.配置用户免密及权限2.配置机器 SSH 免密登陆3.启动 zookeeper4.初始化数据库5.修改相关配置5.修改 dolphinscheduler_env.sh 文件 三、启动DolphinScheduler四、登录 DolphinS…...
居民健康监测小程序|基于微信小程序的居民健康监测小程序设计与实现(源码+数据库+文档)
居民健康监测小程序目录 目录 基于微信小程序的居民健康监测小程序设计与实现 一、前言 二、系统设计 三、系统功能设计 1、用户信息管理 2、健康科普管理 5.3公告类型管理 3、论坛信息管理 四、数据库设计 五、核心代码 六、论文参考 七、最新计算机毕设选题推…...
【海贼王的数据航海】排序——概念|直接插入排序|希尔排序
目录 1 -> 排序的概念及其运用 1.1 -> 排序的概念 1.2 -> 常见的排序算法 2 -> 插入排序 2.1 -> 基本思想 2.2 -> 直接插入排序 2.2.1 -> 代码实现 2.3 -> 希尔排序(缩小增量排序) 2.3.1 -> 代码实现 1 -> 排序的概念及其运用 1.1 -&g…...
Docker环境快速搭建RocketMq
window上面安装: 1.Namesrv docker pull rocketmqinc/rocketmq创建C:/docker/rocketmq/data/namesrv/logs:/root/logs C:/docker/rocketmq/data/namesrv/store:/root/store 目录 namesrv: docker run -d --restartalways --name rmqnamesrv -p 9876:9876 -v C:/do…...
【leetcode热题】比较版本号
难度: 中等通过率: 22.1%题目链接:. - 力扣(LeetCode) 题目描述 比较两个版本号 version1 和 version2。 如果 version1 > version2 返回 1,如果 version1 < version2 返回 -1, 除此之外…...
【ArcGISPro】道路数据下载并使用
下载 下载链接: Geofabrik 下载服务器 这些数据通常 每天更新。 下载结果 arcmap用户下载工具 10.2:http://www.arcgis.com/home/item.html?id=16970017f81349548d0a9eead0ebba39 10.3:...
DataGrip 面试题及答案整理,最新面试题
DataGrip的数据库兼容性和多数据库支持如何实现? DataGrip实现数据库兼容性和多数据库支持的方式包括: 1、广泛的数据库支持: DataGrip支持多种数据库,包括但不限于MySQL, PostgreSQL, SQL Server, Oracle, SQLite, 和MongoDB&a…...
2、设计模式之单例模式详解(Singleton)
单例模式详解 一、什么是单例模式 单例模式是Java中最简单的设计模式之一。这种类型的设计模式属于创建者模式,它提供了一种访问对象的最佳方式。 这种设计模式涉及到一个单一的类,该类负责创建自己的对象,同时确保只有单个对象被创建。这个…...
【django framework】ModelSerializer+GenericAPIView,如何在提交前修改某些字段值
【django framework】ModelSerializerGenericAPIView,如何在提交前修改某些字段值 我们经常会遇到下面这种情况: 序列化器用的是ModelSerializer,写视图的时候继承的是generics.CreateAPIView。现在我想在正式提交到数据库(perform_create)之…...
2024年【P气瓶充装】模拟考试及P气瓶充装证考试
题库来源:安全生产模拟考试一点通公众号小程序 P气瓶充装模拟考试是安全生产模拟考试一点通生成的,P气瓶充装证模拟考试题库是根据P气瓶充装最新版教材汇编出P气瓶充装仿真模拟考试。2024年【P气瓶充装】模拟考试及P气瓶充装证考试 1、【多选题】《中华…...
<JavaEE> 数据链路层 -- 以太网协议、MTU限制、ARP协议
目录 以太网协议 什么是以太网? 以太网的帧格式 什么是MAC地址? MAC地址和IP地址的对比? MTU(最大传输单元)限制 什么是MTU限制? MTU对IP协议有什么影响? MTU对UDP协议有什么影响&…...
认识Testbench仿真激励
一、认识Testbench Bench有平台之意,所以Testbench就是测试平台的意思。 任何一个被测模块,都有输入和输出,此模块是否合格的判断依据,就是在满足输入要求的情况下,能否得到符合预期的输出。我们把被测模块称作UUT&…...
Postman请求API接口测试步骤和说明
Postman请求API接口测试步骤 本文测试的接口是国内数智客(www.shuzike.com)的API接口手机三要素验证,验证个人的姓名,身份证号码,手机号码是否一致。 1、设置接口的Headers参数。 Content-Type:applicati…...
这是二叉搜索树吗?
一棵二叉搜索树可被递归地定义为具有下列性质的二叉树:对于任一结点, 其左子树中所有结点的键值小于该结点的键值;其右子树中所有结点的键值大于等于该结点的键值;其左右子树都是二叉搜索树。 所谓二叉搜索树的“镜像”…...
5.82 BCC工具之tcpdrop.py解读
一,工具简介 tcpdrop工具打印被内核丢弃的 TCP 数据包或段的详细信息,包括导致丢弃的内核堆栈跟踪。 当网络出现拥堵、资源不足或其他原因导致数据包被内核丢弃时,tcpdrop可以帮助开发者和网络管理员识别并定位问题。 该工具通过钩住内核中处理TCP数据包的相关函数,捕获…...
JavaScript 基础知识
一、初识 JavaScript 1、JS 初体验 JS 有3种书写位置,分别为行内、内部和外部。 示例: <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"wid…...
观成科技:隐蔽隧道工具Ligolo-ng加密流量分析
1.工具介绍 Ligolo-ng是一款由go编写的高效隧道工具,该工具基于TUN接口实现其功能,利用反向TCP/TLS连接建立一条隐蔽的通信信道,支持使用Let’s Encrypt自动生成证书。Ligolo-ng的通信隐蔽性体现在其支持多种连接方式,适应复杂网…...
深入剖析AI大模型:大模型时代的 Prompt 工程全解析
今天聊的内容,我认为是AI开发里面非常重要的内容。它在AI开发里无处不在,当你对 AI 助手说 "用李白的风格写一首关于人工智能的诗",或者让翻译模型 "将这段合同翻译成商务日语" 时,输入的这句话就是 Prompt。…...
java_网络服务相关_gateway_nacos_feign区别联系
1. spring-cloud-starter-gateway 作用:作为微服务架构的网关,统一入口,处理所有外部请求。 核心能力: 路由转发(基于路径、服务名等)过滤器(鉴权、限流、日志、Header 处理)支持负…...
学习STC51单片机31(芯片为STC89C52RCRC)OLED显示屏1
每日一言 生活的美好,总是藏在那些你咬牙坚持的日子里。 硬件:OLED 以后要用到OLED的时候找到这个文件 OLED的设备地址 SSD1306"SSD" 是品牌缩写,"1306" 是产品编号。 驱动 OLED 屏幕的 IIC 总线数据传输格式 示意图 …...
Spring Boot面试题精选汇总
🤟致敬读者 🟩感谢阅读🟦笑口常开🟪生日快乐⬛早点睡觉 📘博主相关 🟧博主信息🟨博客首页🟫专栏推荐🟥活动信息 文章目录 Spring Boot面试题精选汇总⚙️ **一、核心概…...
AI编程--插件对比分析:CodeRider、GitHub Copilot及其他
AI编程插件对比分析:CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展,AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者,分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...
【7色560页】职场可视化逻辑图高级数据分析PPT模版
7种色调职场工作汇报PPT,橙蓝、黑红、红蓝、蓝橙灰、浅蓝、浅绿、深蓝七种色调模版 【7色560页】职场可视化逻辑图高级数据分析PPT模版:职场可视化逻辑图分析PPT模版https://pan.quark.cn/s/78aeabbd92d1...
【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的“no matching...“系列算法协商失败问题
【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的"no matching..."系列算法协商失败问题 摘要: 近期,在使用较新版本的OpenSSH客户端连接老旧SSH服务器时,会遇到 "no matching key exchange method found", "n…...
SpringAI实战:ChatModel智能对话全解
一、引言:Spring AI 与 Chat Model 的核心价值 🚀 在 Java 生态中集成大模型能力,Spring AI 提供了高效的解决方案 🤖。其中 Chat Model 作为核心交互组件,通过标准化接口简化了与大语言模型(LLM࿰…...
C# winform教程(二)----checkbox
一、作用 提供一个用户选择或者不选的状态,这是一个可以多选的控件。 二、属性 其实功能大差不差,除了特殊的几个外,与button基本相同,所有说几个独有的 checkbox属性 名称内容含义appearance控件外观可以变成按钮形状checkali…...
