当前位置: 首页 > news >正文

YOLOv9改进策略:注意力机制 | SimAM(无参Attention),效果秒杀CBAM、SE

     💡💡💡本文改进内容:SimAM是一种轻量级的自注意力机制,其网络结构与Transformer类似,但是在计算注意力权重时使用的是线性层而不是点积

yolov9-c-CoordAtt summary: 972 layers, 51024476 parameters, 51024444 gradients, 238.9 GFLOPs

 改进结构图如下:

YOLOv9魔术师专栏

☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️ ☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️

包含注意力机制魔改、卷积魔改、检测头创新、损失&IOU优化、block优化&多层特征融合、 轻量级网络设计、24年最新顶会改进思路、原创自研paper级创新等

☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️

✨✨✨ 新开专栏暂定免费限时开放,后续每月调价一次✨✨✨

🚀🚀🚀 本项目持续更新 | 更新完结保底≥50+ ,冲刺100+🚀🚀🚀

🍉🍉🍉 联系WX: AI_CV_0624 欢迎交流!🍉🍉🍉

YOLOv9魔改:注意力机制、检测头、blcok魔改、自研原创等

 YOLOv9魔术师

💡💡💡全网独家首发创新(原创),适合paper !!!

💡💡💡 2024年计算机视觉顶会创新点适用于Yolov5、Yolov7、Yolov8等各个Yolo系列,专栏文章提供每一步步骤和源码,轻松带你上手魔改网络 !!!

💡💡💡重点:通过本专栏的阅读,后续你也可以设计魔改网络,在网络不同位置(Backbone、head、detect、loss等)进行魔改,实现创新!!!

 1.YOLOv9原理介绍

论文: 2402.13616.pdf (arxiv.org)

代码:GitHub - WongKinYiu/yolov9: Implementation of paper - YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information摘要: 如今的深度学习方法重点关注如何设计最合适的目标函数,从而使得模型的预测结果能够最接近真实情况。同时,必须设计一个适当的架构,可以帮助获取足够的信息进行预测。然而,现有方法忽略了一个事实,即当输入数据经过逐层特征提取和空间变换时,大量信息将会丢失。因此,YOLOv9 深入研究了数据通过深度网络传输时数据丢失的重要问题,即信息瓶颈和可逆函数。作者提出了可编程梯度信息(programmable gradient information,PGI)的概念,来应对深度网络实现多个目标所需要的各种变化。PGI 可以为目标任务计算目标函数提供完整的输入信息,从而获得可靠的梯度信息来更新网络权值。此外,研究者基于梯度路径规划设计了一种新的轻量级网络架构,即通用高效层聚合网络(Generalized Efficient Layer Aggregation Network,GELAN)。该架构证实了 PGI 可以在轻量级模型上取得优异的结果。研究者在基于 MS COCO 数据集的目标检测任务上验证所提出的 GELAN 和 PGI。结果表明,与其他 SOTA 方法相比,GELAN 仅使用传统卷积算子即可实现更好的参数利用率。对于 PGI 而言,它的适用性很强,可用于从轻型到大型的各种模型。我们可以用它来获取完整的信息,从而使从头开始训练的模型能够比使用大型数据集预训练的 SOTA 模型获得更好的结果。对比结果如图1所示。

 YOLOv9框架图

1.1 YOLOv9框架介绍

YOLOv9各个模型介绍

2. SimAM:无参Attention

论文: http://proceedings.mlr.press/v139/yang21o/yang21o.pdf

        SimAM(Simple Attention Mechanism)是一种轻量级的自注意力机制,其网络结构与Transformer类似,但是在计算注意力权重时使用的是线性层而不是点积。其网络结构如下:

输入序列 -> Embedding层 -> Dropout层 -> 多层SimAM层 -> 全连接层 -> Softmax层 -> 输出结果

其中,SimAM层由以下几个部分组成:

  1. 多头注意力层:输入序列经过多个线性映射后,分成多个头,每个头计算注意力权重。

  2. 残差连接层:将多头注意力层的输出与输入序列相加,保证信息不会丢失。

  3. 前向传递层:对残差连接层的输出进行线性变换和激活函数处理,再与残差连接层的输出相加。

  4. 归一化层:对前向传递层的输出进行层归一化处理,加速训练并提高模型性能。

通过多层SimAM层的堆叠,模型可以学习到输入序列中的长程依赖关系,并生成对应的输出序列。

 

 在不增加原始网络参数的情况下,为特征图推断三维注意力权重
1、提出优化能量函数以发掘每个神经元的重要性
2、针对能量函数推导出一种快速解析解,不超过10行代码即可实现。 

表格给出了ImageNet数据集上不同注意力机制的性能对比,从中可以看到:

  • 所有注意力模块均可以提升基线模型的性能;
  • 所提SimAM在ResNet18与ResNet101基线上取得了最佳性能提升;
  • 对于ResNet34、ResNet50、ResNeXt50、MobileNetV2,所提SimAM仍可取得与其他注意力相当性能;
  • 值得一提的是,所提SimAM并不会引入额外的参数
  • 在推理速度方面,所提SimAM与SE、ECA相当,优于CBAM、SRM。

1.1 加入yolov8 modules.py

      

3.SimAM加入到YOLOv9

3.1新建py文件,路径为models/attention/attention.py

######################  SimAM   ####     start   by  AI&CV  ###############################
import torch
from torch import nn
from torch.nn import init
import torch.nn.functional as Fclass SimAM(torch.nn.Module):def __init__(self,c1, e_lambda=1e-4):super(SimAM, self).__init__()self.activaton = nn.Sigmoid()self.e_lambda = e_lambdadef __repr__(self):s = self.__class__.__name__ + '('s += ('lambda=%f)' % self.e_lambda)return s@staticmethoddef get_module_name():return "simam"def forward(self, x):b, c, h, w = x.size()n = w * h - 1x_minus_mu_square = (x - x.mean(dim=[2, 3], keepdim=True)).pow(2)y = x_minus_mu_square / (4 * (x_minus_mu_square.sum(dim=[2, 3], keepdim=True) / n + self.e_lambda)) + 0.5return x * self.activaton(y)
######################  SimAM   ####     end   by  AI&CV  ###############################

3.2修改yolo.py

1)首先进行引用

from models.attention.attention import *

2)修改def parse_model(d, ch):  # model_dict, input_channels(3)

在源码基础上加入SimAM

        elif m is nn.BatchNorm2d:args = [ch[f]]###attention #####elif m in {EMA_attention,CoordAtt,SimAM}:c2 = ch[f]args = [c2, *args]###attention #####

3.3 yolov9-c-SimAM.yaml

# YOLOv9# parameters
nc: 80  # number of classes
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple
#activation: nn.LeakyReLU(0.1)
#activation: nn.ReLU()# anchors
anchors: 3# YOLOv9 backbone
backbone:[[-1, 1, Silence, []],  # conv down[-1, 1, Conv, [64, 3, 2]],  # 1-P1/2# conv down[-1, 1, Conv, [128, 3, 2]],  # 2-P2/4# elan-1 block[-1, 1, RepNCSPELAN4, [256, 128, 64, 1]],  # 3# avg-conv down[-1, 1, ADown, [256]],  # 4-P3/8# elan-2 block[-1, 1, RepNCSPELAN4, [512, 256, 128, 1]],  # 5# avg-conv down[-1, 1, ADown, [512]],  # 6-P4/16# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 7# avg-conv down[-1, 1, ADown, [512]],  # 8-P5/32# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 9[-1, 1, SimAM, [512]],  # 10]# YOLOv9 head
head:[# elan-spp block[-1, 1, SPPELAN, [512, 256]],  # 11# up-concat merge[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 7], 1, Concat, [1]],  # cat backbone P4# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 14# up-concat merge[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 5], 1, Concat, [1]],  # cat backbone P3# elan-2 block[-1, 1, RepNCSPELAN4, [256, 256, 128, 1]],  # 17 (P3/8-small)# avg-conv-down merge[-1, 1, ADown, [256]],[[-1, 14], 1, Concat, [1]],  # cat head P4# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 20 (P4/16-medium)# avg-conv-down merge[-1, 1, ADown, [512]],[[-1, 11], 1, Concat, [1]],  # cat head P5# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 23 (P5/32-large)# multi-level reversible auxiliary branch# routing[5, 1, CBLinear, [[256]]], # 24[7, 1, CBLinear, [[256, 512]]], # 25[9, 1, CBLinear, [[256, 512, 512]]], # 26# conv down[0, 1, Conv, [64, 3, 2]],  # 27-P1/2# conv down[-1, 1, Conv, [128, 3, 2]],  # 28-P2/4# elan-1 block[-1, 1, RepNCSPELAN4, [256, 128, 64, 1]],  # 29# avg-conv down fuse[-1, 1, ADown, [256]],  # 30-P3/8[[24, 25, 26, -1], 1, CBFuse, [[0, 0, 0]]], # 31  # elan-2 block[-1, 1, RepNCSPELAN4, [512, 256, 128, 1]],  # 32# avg-conv down fuse[-1, 1, ADown, [512]],  # 33-P4/16[[25, 26, -1], 1, CBFuse, [[1, 1]]], # 34 # elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 35# avg-conv down fuse[-1, 1, ADown, [512]],  # 36-P5/32[[26, -1], 1, CBFuse, [[2]]], # 37# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 38# detection head# detect[[32, 35, 38, 17, 20, 23], 1, DualDDetect, [nc]],  # DualDDetect(A3, A4, A5, P3, P4, P5)]

相关文章:

YOLOv9改进策略:注意力机制 | SimAM(无参Attention),效果秒杀CBAM、SE

💡💡💡本文改进内容:SimAM是一种轻量级的自注意力机制,其网络结构与Transformer类似,但是在计算注意力权重时使用的是线性层而不是点积 yolov9-c-CoordAtt summary: 972 layers, 51024476 parameters, 510…...

宝塔 安装对外服务Tomcat和JDK

一、安装Tomcat\JDK 切记1:如果选择下载节点失败,请到软件商城安装 。 切记2:提醒安装Nginx或Apache ,先点安装,进入再打叉关闭。因为Tomcat服务足够为我们搭建JavaWeb网站服务了。 切记3:Nginx占用80端口…...

rust最新版本安装-提高下载速度

1)拉取依赖包将安装脚本输出到本地rust.sh脚本中 curl --proto https --tlsv1.2 -sSf https://sh.rustup.rs > rust.sh 2)更新rust.sh脚本内容、修改源 # 编辑rust.sh vi rust.sh # 将RUSTUP_UPDATE_ROOT的值替换为: RUSTUP_UPDATE_ROOT&q…...

数据清洗与预处理:打造高质量数据分析基础

随着数据的快速增长,数据分析已经成为企业和组织的核心业务。然而,原始数据往往包含各种杂质和异常,这就需要我们进行数据清洗和预处理,以确保分析结果的准确性和可靠性。 1. 数据清洗的重要性: 数据清洗是指对原始数据进行检查、修正和完善,以消除错误、不一致性和噪声…...

Linux服务器(Debian系)包含UOS安全相关巡检shell脚本

#!/bin/bash# Define output file current_date$(date "%Y%m%d") # Gets the current date in YYYYMMDD format output_file"server_security_inspection_report_${current_date}.txt"# Empty the file initially echo > $output_file# 获取巡检时间 (…...

BS4网络提取selenium.chrome.WebDriver类的方法及属性

BS4网络提取selenium.chrome.WebDriver类的方法及属性 chrome.webdriver: selenium.webdriver.chrome.webdriver — Selenium 4.18.1 documentation class selenium.webdriver.chrome.webdriver.WebDriver 是 Selenium 中用于操作 Chrome 浏览器的 WebDriver 类。WebDriver 类…...

Prompt Engineering(提示工程)

Prompt 工程简介 在近年来,大模型(Large Model)如GPT、BERT等在自然语言处理领域取得了巨大的成功。这些模型通过海量数据的训练,具备了强大的语言理解和生成能力。然而,要想充分发挥这些大模型的潜力,仅仅…...

移远通信亮相AWE 2024,以科技力量推动智能家居产业加速发展

科技的飞速发展,为我们的生活带来了诸多便利,从传统的家电产品到智能化的家居设备,我们的居家生活正朝着更智能、更便捷的方向变革。 3月14日,中国家电及消费电子博览会(Appliance&electronics World Expo&#xf…...

Java中上传数据的安全性探讨与实践

✨✨谢谢大家捧场,祝屏幕前的小伙伴们每天都有好运相伴左右,一定要天天开心哦!✨✨ 🎈🎈作者主页: 喔的嘛呀🎈🎈 目录 引言 一. 文件上传的风险 二. 使用合适的框架和库 1. Spr…...

Leetcode 17. 电话号码的字母组合

心路历程: 之前看过这道题的解法但是忘了。一开始想多重循环遍历,发现不知道写几个for循环,于是想到递归;发现递归需要记录选择的路径而不是返回节点值,想到了回溯。 回溯的解题模板:维护两个变量&#xf…...

蓝桥杯单片机快速开发笔记——独立键盘

一、原理分析 二、思维导图 三、示例框架 #include "reg52.h" sbit S7 P3^0; sbit S6 P3^1; sbit S5 P3^2; sbit S4 P3^3; void ScanKeys(){if(S7 0){Delay(500);if(S7 0){while(S7 0);}}if(S6 0){Delay(500);if(S6 0){while(S6 0)…...

Swift 面试题及答案整理,最新面试题

Swift 中如何实现单例模式? 在Swift中,单例模式的实现通常采用静态属性和私有初始化方法来确保一个类仅有一个实例。具体做法是:定义一个静态属性来存储这个单例实例,然后将类的初始化方法设为私有,以阻止外部通过构造…...

微信小程序上传图片c# asp.net mvc端接收案例

在微信小程序上传图片到服务器,并在ASP.NET MVC后端接收这个图片,可以通过以下步骤实现: 1. 微信小程序端 首先,在微信小程序前端,使用 wx.chooseImage API 选择图片,然后使用 wx.uploadFile API 将图片上…...

57、服务攻防——应用协议RsyncSSHRDP漏洞批扫口令猜解

文章目录 口令猜解——Hydra-FTP&RDP&SSH配置不当——未授权访问—Rsync文件备份协议漏洞——应用软件-FTP&Proftpd搭建 口令猜解——Hydra-FTP&RDP&SSH FTP:文本传输协议,端口21;RDP:windows上远程终端协议…...

java:Druid工具类解析sql获取表名

java&#xff1a;Druid工具类解析sql获取表名 1 前言 alibaba的druid连接池除了sql执行的功能外&#xff0c;还有sql语法解析的工具提供&#xff0c;参考依赖如下&#xff1a; <dependency><groupId>com.alibaba</groupId><artifactId>druid</ar…...

MySQL--深入理解MVCC机制原理

什么是MVCC&#xff1f; MVCC全称 Multi-Version Concurrency Control&#xff0c;即多版本并发控制&#xff0c;维持一个数据的多个版本&#xff0c;主要是为了提升数据库的并发访问性能&#xff0c;用更高性能的方式去处理数据库读写冲突问题&#xff0c;实现无锁并发。 什…...

数据挖掘简介与应用领域概述

数据挖掘&#xff0c;作为信息技术领域中的重要分支之一&#xff0c;旨在从大量数据中发现潜在的模式、关联和趋势&#xff0c;以提取有用的信息和知识。在信息爆炸时代&#xff0c;大量数据的积累成为了常态&#xff0c;数据挖掘技术的出现填补了人们处理这些数据的空白&#…...

瑞熙贝通打造智慧校园实验室安全综合管理平台

一、建设思路 瑞熙贝通实验室安全综合管理平台是基于以实验室安全&#xff0c;用现代化管理思想与人工智能、大数据、互联网技术、物联网技术、云计算技术、人体感应技术、语音技术、生物识别技术、手机APP、自动化仪器分析技术有机结合&#xff0c;通过建立以实验室为中心的管…...

openstack调整虚拟机CPU 内存 磁盘 --来自gpt

在OpenStack中调整虚拟机&#xff08;即实例&#xff09;的CPU、内存&#xff08;RAM&#xff09;和磁盘大小通常涉及到以下几个步骤&#xff1a;首先&#xff0c;确定你要修改的实例名称或ID&#xff1b;其次&#xff0c;根据需要调整的资源类型&#xff0c;使用相应的命令进行…...

【IC设计】Verilog线性序列机点灯案例(三)(小梅哥课程)

声明&#xff1a;案例和代码来自小梅哥课程&#xff0c;本人仅对知识点做做笔记&#xff0c;如有学习需要请支持官方正版。 文章目录 该系列目录设计目标设计思路RTL及Testbench代码RTL代码Testbench代码 仿真结果上板视频 该系列目录 Verilog线性序列机点灯案例(一)&#xff…...

铭豹扩展坞 USB转网口 突然无法识别解决方法

当 USB 转网口扩展坞在一台笔记本上无法识别,但在其他电脑上正常工作时,问题通常出在笔记本自身或其与扩展坞的兼容性上。以下是系统化的定位思路和排查步骤,帮助你快速找到故障原因: 背景: 一个M-pard(铭豹)扩展坞的网卡突然无法识别了,扩展出来的三个USB接口正常。…...

基于距离变化能量开销动态调整的WSN低功耗拓扑控制开销算法matlab仿真

目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.算法仿真参数 5.算法理论概述 6.参考文献 7.完整程序 1.程序功能描述 通过动态调整节点通信的能量开销&#xff0c;平衡网络负载&#xff0c;延长WSN生命周期。具体通过建立基于距离的能量消耗模型&am…...

基于服务器使用 apt 安装、配置 Nginx

&#x1f9fe; 一、查看可安装的 Nginx 版本 首先&#xff0c;你可以运行以下命令查看可用版本&#xff1a; apt-cache madison nginx-core输出示例&#xff1a; nginx-core | 1.18.0-6ubuntu14.6 | http://archive.ubuntu.com/ubuntu focal-updates/main amd64 Packages ng…...

(二)原型模式

原型的功能是将一个已经存在的对象作为源目标,其余对象都是通过这个源目标创建。发挥复制的作用就是原型模式的核心思想。 一、源型模式的定义 原型模式是指第二次创建对象可以通过复制已经存在的原型对象来实现,忽略对象创建过程中的其它细节。 📌 核心特点: 避免重复初…...

【HTTP三个基础问题】

面试官您好&#xff01;HTTP是超文本传输协议&#xff0c;是互联网上客户端和服务器之间传输超文本数据&#xff08;比如文字、图片、音频、视频等&#xff09;的核心协议&#xff0c;当前互联网应用最广泛的版本是HTTP1.1&#xff0c;它基于经典的C/S模型&#xff0c;也就是客…...

Typeerror: cannot read properties of undefined (reading ‘XXX‘)

最近需要在离线机器上运行软件&#xff0c;所以得把软件用docker打包起来&#xff0c;大部分功能都没问题&#xff0c;出了一个奇怪的事情。同样的代码&#xff0c;在本机上用vscode可以运行起来&#xff0c;但是打包之后在docker里出现了问题。使用的是dialog组件&#xff0c;…...

用机器学习破解新能源领域的“弃风”难题

音乐发烧友深有体会&#xff0c;玩音乐的本质就是玩电网。火电声音偏暖&#xff0c;水电偏冷&#xff0c;风电偏空旷。至于太阳能发的电&#xff0c;则略显朦胧和单薄。 不知你是否有感觉&#xff0c;近两年家里的音响声音越来越冷&#xff0c;听起来越来越单薄&#xff1f; —…...

android13 app的触摸问题定位分析流程

一、知识点 一般来说,触摸问题都是app层面出问题,我们可以在ViewRootImpl.java添加log的方式定位;如果是touchableRegion的计算问题,就会相对比较麻烦了,需要通过adb shell dumpsys input > input.log指令,且通过打印堆栈的方式,逐步定位问题,并找到修改方案。 问题…...

高防服务器价格高原因分析

高防服务器的价格较高&#xff0c;主要是由于其特殊的防御机制、硬件配置、运营维护等多方面的综合成本。以下从技术、资源和服务三个维度详细解析高防服务器昂贵的原因&#xff1a; 一、硬件与技术投入 大带宽需求 DDoS攻击通过占用大量带宽资源瘫痪目标服务器&#xff0c;因此…...

《信号与系统》第 6 章 信号与系统的时域和频域特性

目录 6.0 引言 6.1 傅里叶变换的模和相位表示 6.2 线性时不变系统频率响应的模和相位表示 6.2.1 线性与非线性相位 6.2.2 群时延 6.2.3 对数模和相位图 6.3 理想频率选择性滤波器的时域特性 6.4 非理想滤波器的时域和频域特性讨论 6.5 一阶与二阶连续时间系统 6.5.1 …...