深度学习-解读GoogleNet深度学习网络
深度学习-解读GoogleNet深度学习网络
深度学习中,经典网络引领一波又一波的技术革命,从LetNet到当前最火的GPT所用的Transformer,它们把AI技术不断推向高潮。2012年AlexNet大放异彩,它把深度学习技术引领第一个高峰,打开人们的视野。
用pytorch构建CNN经典网络模型GoogleNet,又称为Inception V1 ,还可以用数据进行训练模型,得到一个优化的模型。
深度学习
深度学习-回顾经典AlexNet网络:山高我为峰-CSDN博客
深度学习-CNN网络改进版LetNet5-CSDN博客
深度学习-回顾CNN经典网络LetNet-CSDN博客
GPT实战系列-如何用自己数据微调ChatGLM2模型训练_pytorch 训练chatglm2 模型-CSDN博客
Caffe笔记:python图像识别与分类_python 怎么识别 caffe-CSDN博客
深度学习-Pytorch同时使用Numpy和Tensors各自特效-CSDN博客
深度学习-Pytorch运算的基本数据类型_pytorch支持的训练数据类型-CSDN博客
深度学习-Pytorch如何保存和加载模型
深度学习-Pytorch如何构建和训练模型-CSDN博客
深度学习-Pytorch数据集构造和分批加载-CSDN博客
Python Faster R-CNN 安装配置记录_attributeerror: has no attribute 'smooth_l1_loss-CSDN博客
经典算法-遗传算法的python实现
经典算法-模拟退火算法的python实现
经典算法-粒子群算法的python实现-CSDN博客
GoogleNet概述
GoogLeNet是2014年Christian Szegedy提出的一种全新的深度学习结构,和VGGNet同一年诞生,获得2014年ILSVRC竞赛的第一名。
在这之前的AlexNet、VGG等结构都是通过增大网络的深度(层数)来获得更好的训练效果,但层数的增加会带来很多负作用,比如overfit、梯度消失、梯度爆炸等。
inception的提出则从另一种角度来提升训练结果:能更高效的利用计算资源,在相同的计算量下能提取到更多的特征,从而提升训练结果。
网络结构
Inception结构
inception结构的主要贡献有两个:
一是使用1x1的卷积来进行升降维;
二是在多个尺寸上同时进行卷积再聚合。

GoogleNet 的结构主要有Inception模块构成,主要有9个Incepion模块,和两个卷积模块构成。Inception也有2个改版。
结构描述
输入图像3通道分辨率:224x224x3
9层:图像输入后,5个卷积层,3个全连接层,1个输出层;
(1)C1:64个conv 7x7,stride=2–> MaxPool 3x3, stride=2 --> 输出 64个56x56;
(2)C2:192个conv 3x3, stride=2 --> MaxPool 3x3, stride=2 --> 输出 192个28x28;
(3)inception(3a) :–> 输出 256个28x28;
(4)inception(3b) :–> 输出 480个28x28;–> MaxPool 3x3, stride=2 --> 输出 480个14x14;
(5)inception(4a) :–> 输出 512个14x14;
(6)inception(4b) :–> 输出 512个14x14;
(7)inception(4c) :–> 输出 512个14x14;
(8)inception(4d) :–> 输出 528个14x14;
(9)inception(4e) :–> 输出 832个14x14;–> MaxPool 3x3, stride=2 --> 输出 832个7x7;
(10)inception(5a) :–> 输出 832个7x7;
(11)inception(5b) :–> 输出 1024个7x7;–> AvgPool 7x1, stride=1 --> 输出 1024个1x1;
(12)Dropout(40%):–> 输出 1024个1x1;
(13)linear --> 输出 1000个1x1;
(14)softmax --> 输出 1000个1x1;
整个GoogleNet 网络包含的参数数量表。
Pytorch实现
以下便是使用Pytorch实现的经典网络结构GoogleNet
class ConvReLU(nn.Module):def __init__(self, in_channels, out_channels, kernel_size, stride, padding):super().__init__()self.conv = nn.Sequential(nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, bias=True),nn.ReLU(inplace=True),) def forward(self, x):return self.conv(x)class InceptionModule(nn.Module):def __init__(self, in_channels, c1x1_out, c3x3_in, c3x3_out, c5x5_in, c5x5_out, pool_proj):super().__init__()self.branch1 = ConvReLU(in_channels=in_channels, out_channels=c1x1_out, kernel_size=1, stride=1, padding=0)self.branch2 = nn.Sequential(ConvReLU(in_channels=in_channels, out_channels=c3x3_in, kernel_size=1, stride=1, padding=0),ConvReLU(in_channels=c3x3_in, out_channels=c3x3_out, kernel_size=3, stride=1, padding=1))self.branch3 = nn.Sequential(ConvReLU(in_channels=in_channels, out_channels=c5x5_in, kernel_size=1, stride=1, padding=0),ConvReLU(in_channels=c5x5_in, out_channels=c5x5_out, kernel_size=5, stride=1, padding=2))self.branch4 = nn.Sequential(nn.MaxPool2d(kernel_size=3, stride=1, padding=1),ConvReLU(in_channels=in_channels, out_channels=pool_proj, kernel_size=1, stride=1, padding=0))def forward(self, x):x1 = self.branch1(x)x2 = self.branch2(x)x3 = self.branch3(x)x4 = self.branch4(x)x = torch.cat([x1, x2, x3, x4], dim=1)return xclass AuxClassifier(nn.Module):def __init__(self, in_channels, n_classes):super().__init__()self.avgpool = nn.AdaptiveAvgPool2d(4)self.conv = ConvReLU(in_channels=in_channels, out_channels=128, kernel_size=1, stride=1, padding=0)self.fc1 = nn.Sequential(nn.Linear(in_features=128*4*4, out_features=1024, bias=True),nn.ReLU(inplace=True))self.dropout = nn.Dropout(p=0.7)self.fc2 = nn.Linear(in_features=1024, out_features=n_classes, bias=True)self.softmax = nn.Softmax(dim=-1)def forward(self, x):b, _, _ ,_ = x.shapex = self.avgpool(x)x = self.conv(x)x = self.fc1(x.view(b, -1))x = self.dropout(x)x = self.fc2(x)x = self.softmax(x)return xclass GooLeNet(nn.Module):def __init__(self, in_channels, n_classes) -> None:super().__init__()self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)self.avgpool = nn.AdaptiveAvgPool2d(output_size=1)self.conv1 = nn.Sequential(ConvReLU(in_channels=in_channels, out_channels=64, kernel_size=7, stride=2, padding=3),nn.LocalResponseNorm(size=5, k=2, alpha=1e-4, beta=0.75),)self.conv2 = nn.Sequential(ConvReLU(in_channels=64, out_channels=64, kernel_size=1, stride=1, padding=0),ConvReLU(in_channels=64, out_channels=192, kernel_size=3, stride=1, padding=1),nn.LocalResponseNorm(size=5, k=2, alpha=1e-4, beta=0.75),)self.inception3a = InceptionModule(in_channels=192, c1x1_out=64, c3x3_in=96, c3x3_out=128, c5x5_in=16, c5x5_out=32, pool_proj=32)self.inception3b = InceptionModule(in_channels=256, c1x1_out=128, c3x3_in=128, c3x3_out=192, c5x5_in=32, c5x5_out=96, pool_proj=64)self.inception4a = InceptionModule(in_channels=480, c1x1_out=192, c3x3_in=96, c3x3_out=208, c5x5_in=16, c5x5_out=48, pool_proj=64)self.inception4b = InceptionModule(in_channels=512, c1x1_out=160, c3x3_in=112, c3x3_out=224, c5x5_in=24, c5x5_out=64, pool_proj=64)self.inception4c = InceptionModule(in_channels=512, c1x1_out=128, c3x3_in=128, c3x3_out=256, c5x5_in=24, c5x5_out=64, pool_proj=64)self.inception4d = InceptionModule(in_channels=512, c1x1_out=112, c3x3_in=144, c3x3_out=288, c5x5_in=32, c5x5_out=64, pool_proj=64)self.inception4e = InceptionModule(in_channels=528, c1x1_out=256, c3x3_in=160, c3x3_out=320, c5x5_in=32, c5x5_out=128, pool_proj=128)self.inception5a = InceptionModule(in_channels=832, c1x1_out=256, c3x3_in=160, c3x3_out=320, c5x5_in=32, c5x5_out=128, pool_proj=128)self.inception5b = InceptionModule(in_channels=832, c1x1_out=384, c3x3_in=192, c3x3_out=384, c5x5_in=48, c5x5_out=128, pool_proj=128)self.dropout = nn.Dropout(p=0.4)self.fc = nn.Linear(in_features=1024, out_features=n_classes, bias=True)self.softmax = nn.Softmax(dim=-1)self.aux_classfier1 = AuxClassifier(in_channels=512, n_classes=n_classes)self.aux_classfier2 = AuxClassifier(in_channels=528, n_classes=n_classes)def forward(self, x):b, _, _, _ = x.shapex = self.conv1(x)print('# Conv1 output shape:', x.shape)x = self.maxpool(x)print('# Pool1 output shape:', x.shape)x = self.conv2(x)print('# Conv2 output shape:', x.shape)x = self.maxpool(x)print('# Pool2 output shape:', x.shape)x = self.inception3a(x)print('# Inception3a output shape:', x.shape)x = self.inception3b(x)print('# Inception3b output shape:', x.shape)x = self.maxpool(x)print('# Pool3 output shape:', x.shape)x = self.inception4a(x)print('# Inception4a output shape:', x.shape)aux1 = self.aux_classfier1(x)print('# aux_classifier1 output shape:', aux1.shape)x = self.inception4b(x)print('# Inception4b output shape:', x.shape)x = self.inception4c(x)print('# Inception4c output shape:', x.shape)x = self.inception4d(x)print('# Inception4d output shape:', x.shape)aux2 = self.aux_classfier2(x)print('# aux_classifier2 output shape:', aux2.shape)x = self.inception4e(x)print('# Inception4e output shape:', x.shape)x = self.maxpool(x)print('# Pool4 output shape:', x.shape)x = self.inception5a(x)print('# Inception5a output shape:', x.shape)x = self.inception5b(x)print('# Inception5b output shape:', x.shape)x = self.avgpool(x)print('# Avgpool output shape:', x.shape)x = self.dropout(x.view(b, -1))print('# dropout output shape:', x.shape)x = self.fc(x)print('# FC output shape:', x.shape)x = self.softmax(x)print('# Softmax output shape:', x.shape)return x, aux1, aux2inputs = torch.randn(4, 3, 224, 224)
cnn = GooLeNet(in_channels = 3, n_classes = 1000)
outputs = cnn(inputs)

大家可以和前面的对照差异,也可以一窥DeepLearning技术的突破点。
在VGGNet 是一大创举,DeepMind团队更闻名的是在围棋开创一片天地,AlphaGo风靡一时,把人工智能推向又一个高潮,CNN网络引领的深度学习蓬勃发展,造就人工智能技术革命的起点。
觉得有用 收藏 收藏 收藏
点个赞 点个赞 点个赞
End
GPT专栏文章:
GPT实战系列-实战Qwen通义千问在Cuda 12+24G部署方案_通义千问 ptuning-CSDN博客
GPT实战系列-ChatGLM3本地部署CUDA11+1080Ti+显卡24G实战方案
GPT实战系列-Baichuan2本地化部署实战方案
GPT实战系列-让CodeGeeX2帮你写代码和注释_codegeex 中文-CSDN博客
GPT实战系列-ChatGLM3管理工具的API接口_chatglm3 api文档-CSDN博客
GPT实战系列-大话LLM大模型训练-CSDN博客
GPT实战系列-LangChain + ChatGLM3构建天气查询助手
GPT实战系列-大模型为我所用之借用ChatGLM3构建查询助手
GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(二)
GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(一)
GPT实战系列-ChatGLM2模型的微调训练参数解读
GPT实战系列-如何用自己数据微调ChatGLM2模型训练
GPT实战系列-ChatGLM2部署Ubuntu+Cuda11+显存24G实战方案
GPT实战系列-Baichuan2等大模型的计算精度与量化
GPT实战系列-GPT训练的Pretraining,SFT,Reward Modeling,RLHF
GPT实战系列-探究GPT等大模型的文本生成-CSDN博客
相关文章:
深度学习-解读GoogleNet深度学习网络
深度学习-解读GoogleNet深度学习网络 深度学习中,经典网络引领一波又一波的技术革命,从LetNet到当前最火的GPT所用的Transformer,它们把AI技术不断推向高潮。2012年AlexNet大放异彩,它把深度学习技术引领第一个高峰,打…...
【LeetCode: 2684. 矩阵中移动的最大次数 + dfs】
🚀 算法题 🚀 🌲 算法刷题专栏 | 面试必备算法 | 面试高频算法 🍀 🌲 越难的东西,越要努力坚持,因为它具有很高的价值,算法就是这样✨ 🌲 作者简介:硕风和炜,…...
第五节:使用SMB开发WebSocket通信
一、概述 本节主要讲解在SMB中如何进行websocket快速开发,实现客户端连接、关闭、消息通讯等功能。 示例下载:https://download.csdn.net/download/lllllllllluoyi/88949743 二、创建WebSocket服务器 1、在csdnProject工程中新建一个消息流。 添加W…...
Nginx和Ribbon实现负载均衡的区别
Nginx和Ribbon的区别 1. Nginx服务器端负载均衡: 1、Nginx是客户端所有请求统一交给nginx,由nginx进行实现负载均衡请求转发,属于服务器端负载均衡。即请求有nginx服务器端进行转发。 3、Nginx是服务端的负载均衡,Ribbon是客户端…...
流畅的Python(十九)-动态属性和特性
一、核心要义 在Python中,数据的属性和处理数据的方法,统称属性。方法,只是可调用的属性。除了这两者之外,我们还可以创建特性(property),在不改变类接口的前提下,使用存取方法(即读值方法和设值方法)修改数据属性。 二、代码示例 0、相关知识点 #!/usr/bin/env…...
确保云原生部署中的网络安全
数字环境正在以惊人的速度发展,组织正在迅速采用云原生部署和现代化使用微服务和容器构建的应用程序(通常运行在 Kubernetes 等平台上),以推动增长。 无论我们谈论可扩展性、效率还是灵活性,对于努力提供无与伦比的用…...
【分布式websocket 】前端vuex管理客户端消息crud!使用localStorage来存储【第19期】
前言 聊天系统客户端是要存储消息的,因为所有所有的历史消息都从服务器拉的话一方面服务器压力大,另一方面也耗费用户流量。所以客户端存储消息是势在必行的。如何存储呢上一篇文章也写了,大概就是浏览器的话是localStorage或者IndexedDB。然…...
venv uvicorn python 虚拟服务器外网无法访问
python -m venv .venv source ./.venv/bin/activate pip install -r requirements.txt ./run.sh source ./.venv/bin/activate uvicorn main:app --reload 虚拟web服务器外网访问控制台启动命令用以下代码启动 uvicorn main:app --host 0.0.0.0 --port 8501 --reload 启动到后…...
一款博客网站源码
一款博客网站源码 源码软件库 为大家内置了主题 清爽又强大真正的永久可用的一条源码,该版本为整合版本,内置了Joe主题,搭建后直接启用即可~ 安装环境要求: PHP 7.2 以上 MySQL, PostgreSQL, SQLite 任意一种数据库支持ÿ…...
Mr-Robot1靶场练习靶场推荐小白入门练习靶场渗透靶场bp爆破wordpress
下载链接: Mr-Robot: 1 ~ VulnHub 安装: 打开vxbox,菜单栏----管理----导入虚拟电脑 选择下载完的ova文件,并修改想要保存的位置(也可以保持默认位置) 导入完成后可以根据自己的情况去配置网络链接方式 完成…...
数据仓库的设计开发应用(三)
目录 五、数据仓库的实施(一)数据仓库的创建(二)数据抽取转换加载 六、数据仓库系统的开发(一)开发任务(二)开发方法(三)系统测试 七、数据仓库系统的应用&am…...
【04】WebAPI
WebAPI 和标准库不同,WebAPI 是浏览器提供的一套 API,用于操作浏览器窗口和界面 WebAPI 中包含两个部分: BOM:Browser Object Model,浏览器模型,提供和浏览器相关的操作DOM:Document Object Model,文档模型,提供和页面相关的操作BOM BOM 提供了一系列的对象和函数,…...
数据预处理在数据挖掘中的重要性
数据挖掘作为从大量数据中提取有用信息和知识的过程,其结果的准确性和可靠性直接受到数据质量的影响。因此,数据预处理在数据挖掘中扮演着至关重要的角色。让我们探讨数据质量对数据挖掘结果的影响,并介绍常见的数据预处理方法以及它们如何提…...
Java并发编程—JUC线程池架构
Java并发编程(JUC,Java Utilities Concurrency)中的线程池架构是Java提供的一种用于管理和复用线程的机制。线程池的主要目标是减少线程创建和销毁的开销,提高系统的响应速度,并通过合理的线程管理和资源分配ÿ…...
Android input输入子系统
一.Android input输入子系统简介 Input系统是Android系统中负责处理用户输入操作的核心组件,它负责从各种输入设备(如屏幕、键盘、鼠标等)获取原始的输入事件(如按键、触摸、滑动等),并将其转换为Android应…...
如何在webapp中于动发布一个应用
目录 第一步:在webapp文件夹内自定义文件夹第二步:生成一个文本,并把后缀改为 .html第三步:进入bin文件夹打开服务第四步:打开方式选择java第六步:输入你想输出的东西第七步:双击运行即可 第一步…...
部署一个本地的ChatGPT(Ollama)
一 下载Ollama Ollama下载地址:https://ollama.com/download 下载完后 二 安装运行 双击下载好的OllamaSetup.exe开发 安装Ollama: 安装完成后,多了一个Ollama的菜单如下图 : Ollama安装好默认是配置开机运行,如果没有运行可以在…...
Vue 3中的reactive:响应式状态的全面管理
🤍 前端开发工程师、技术日更博主、已过CET6 🍨 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 🕠 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》 🍚 蓝桥云课签约作者、上架课程《Vue.js 和 E…...
【网络】详解HTTPS及探究加密过程
目录 一、什么是HTTPS1、加密解密是什么2、为什么要加密3、常见的加密方式1、对称加密2、非对称加密 二、探究HTTPS如何实现加密1、方案一----只使用对称加密2、方案二----只使用非对称加密3、方案三----双方都使用非对称加密4、方案四----非对称加密 对称加密5、中间人攻击6、…...
【C语言】字符与字符串---从入门到入土级详解
🦄个人主页:修修修也 🎏所属专栏:C语言 ⚙️操作环境:Visual Studio 2022 目录 一.字符类型和字符数组(串)简介 1.ASCII 2.定义,初始化,使用 1>字符的定义及初始化 2>字符串的定义及初始化 二.…...
Vim 调用外部命令学习笔记
Vim 外部命令集成完全指南 文章目录 Vim 外部命令集成完全指南核心概念理解命令语法解析语法对比 常用外部命令详解文本排序与去重文本筛选与搜索高级 grep 搜索技巧文本替换与编辑字符处理高级文本处理编程语言处理其他实用命令 范围操作示例指定行范围处理复合命令示例 实用技…...
synchronized 学习
学习源: https://www.bilibili.com/video/BV1aJ411V763?spm_id_from333.788.videopod.episodes&vd_source32e1c41a9370911ab06d12fbc36c4ebc 1.应用场景 不超卖,也要考虑性能问题(场景) 2.常见面试问题: sync出…...
React Native 导航系统实战(React Navigation)
导航系统实战(React Navigation) React Navigation 是 React Native 应用中最常用的导航库之一,它提供了多种导航模式,如堆栈导航(Stack Navigator)、标签导航(Tab Navigator)和抽屉…...
【HarmonyOS 5.0】DevEco Testing:鸿蒙应用质量保障的终极武器
——全方位测试解决方案与代码实战 一、工具定位与核心能力 DevEco Testing是HarmonyOS官方推出的一体化测试平台,覆盖应用全生命周期测试需求,主要提供五大核心能力: 测试类型检测目标关键指标功能体验基…...
PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建
制造业采购供应链管理是企业运营的核心环节,供应链协同管理在供应链上下游企业之间建立紧密的合作关系,通过信息共享、资源整合、业务协同等方式,实现供应链的全面管理和优化,提高供应链的效率和透明度,降低供应链的成…...
Spring AI与Spring Modulith核心技术解析
Spring AI核心架构解析 Spring AI(https://spring.io/projects/spring-ai)作为Spring生态中的AI集成框架,其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似,但特别为多语…...
Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决
Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决 问题背景 在一个基于 Spring Cloud Gateway WebFlux 构建的微服务项目中,新增了一个本地验证码接口 /code,使用函数式路由(RouterFunction)和 Hutool 的 Circle…...
Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信
文章目录 Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信前言一、网络通信基础概念二、服务端与客户端的完整流程图解三、每一步的详细讲解和代码示例1. 创建Socket(服务端和客户端都要)2. 绑定本地地址和端口&#x…...
Docker 本地安装 mysql 数据库
Docker: Accelerated Container Application Development 下载对应操作系统版本的 docker ;并安装。 基础操作不再赘述。 打开 macOS 终端,开始 docker 安装mysql之旅 第一步 docker search mysql 》〉docker search mysql NAME DE…...
【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的“no matching...“系列算法协商失败问题
【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的"no matching..."系列算法协商失败问题 摘要: 近期,在使用较新版本的OpenSSH客户端连接老旧SSH服务器时,会遇到 "no matching key exchange method found", "n…...
