当前位置: 首页 > news >正文

挑战杯 机器视觉的试卷批改系统 - opencv python 视觉识别

文章目录

  • 0 简介
  • 1 项目背景
  • 2 项目目的
  • 3 系统设计
    • 3.1 目标对象
    • 3.2 系统架构
    • 3.3 软件设计方案
  • 4 图像预处理
    • 4.1 灰度二值化
    • 4.2 形态学处理
    • 4.3 算式提取
    • 4.4 倾斜校正
    • 4.5 字符分割
  • 5 字符识别
    • 5.1 支持向量机原理
    • 5.2 基于SVM的字符识别
    • 5.3 SVM算法实现
  • 6 算法测试
  • 7 系统实现
  • 8 最后

0 简介

🔥 优质竞赛项目系列,今天要分享的是

基于机器视觉的试卷系统 - opencv python 视觉识别

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 项目背景

机器视觉的发展对存在的作业批改问题, 提供了有效的解决方案。 通过基于机器视觉的作业批改系统可以对老师的教学工作进行辅助,改变传统的批改作业方式,
帮助老师减轻教学压力和工作负担, 老师可以快速完成批改过程,及时反馈给学生。 家长同样需要从繁重的重复性检查作业工作中解脱出来,
将更多的精力放在关注学生的学习情况和发现学习问题上。 学生可以通过自我批改作业中发现问题、加深理解, 培养自主学习意识, 提高分析问题和解决问题的能力。
因此, 自动批改作业系统在教育领域的应用表现出了无可比拟的教育价值和发展前景。
在这里插入图片描述

在这里插入图片描述

2 项目目的

在教育领域中人工智能应用愈加广泛, 作业在教学过程中起到重要的作用,当前作业批改存在着重复劳动、 效率低下等诸多问题,
这种传统的批改作业方式占据了老师宝贵的时间。 本文设计一种作业批改视觉系统, 将人工智能应用到教育领域中, 改变老师传统的批改作业方式,
实现自动批改数学算式作业的任务。

学长设计了一个系统系统,可以协助老师和家长完成繁重和重复的作业批改和检查工作, 提高工作效率。

3 系统设计

3.1 目标对象

学长这里以数学作业试卷识别为目标。

在这里插入图片描述

数学作业图像中一列包含多个算式, 字符主要包括印刷体的算式题目和手写体答案组成, 如上图 所示为一张数学算式作业图像。
本课题的难点在于如何有效的去除光线等外部干扰因素, 准确的提取到作业图像中的单个算式信息;选取有效的字符识别算法,
针对印刷体字符和手写体字符设计混合字符分类器,进行有效、 快速的识别; 选取适合的嵌入式设备, 进行软件与硬件的系统集成,实现视觉系统的基本功能,
完成稳定性的批改过程。

3.2 系统架构

通过对视觉系统的研究以及完成作业批改解决方案的设计目标, 采取 PC 平台与嵌入式平台相结合的设计方案。 针对 PC 平台进行软件设计与算法优化,
完成系统的功能要求后, 将程序移植到嵌入式系统中, 在嵌入式设备实现系统的便捷化应用。 对于设计的系统采取多平台测试分析, 保证系统在 PC
平台准确高效的运行, 同时保证嵌入式系统中表现出稳定的性能。 系统的总体结构框图如下。

在这里插入图片描述

首先按照系统功能需求进行分析, 确定要完成的设计任务和目标, 并对系统的功能和性能分析做出设计要求。 其次根据系统的功能划分, 选取基于 PC
平台的软件设计方案完成软件编程, 对系统实现的功能进行验证, 测试其功能和性能是否符合设计要求。 选取视觉系统的嵌入式开发平台,
进行硬件模块设计和开发环境及软件平台的搭建, 将系统软硬件集成在一起进行调试进行, 对系统存在的问题做出改进和优化。

最后通过系统测试, 分别对系统的功能和性能进行测试验证, 是否满足设计的要求。 最终构建一款多平台应用, 基于机器视觉的自动作业批改视觉系统。

3.3 软件设计方案

该系统基于机器视觉的图像处理和字符识别技术, 整个系统的核心是软件设计部分。 能否对作业有效和快速的批改,
很大程度上取决于软件设计部分图像处理的效果和字符识别的准确率。 软件设计主要完成系统相关的功能操作,设计流程可分为图 中的模块组成。

在这里插入图片描述

图像获取是将摄像头等设备获取的作业图像信息转化为数字图像信息; 预处理是对图像进行二值化转换, 去除多余噪声, 进行每一组算式提取,
分割获得单个清晰字符轮廓的过程; 特征提取是对预处理后的字符图像, 进行字符特征提取, 将提取好的特征量输入到分类器, 为字符识别做准备;
字符识别是系统的核心, 对字符分类器进行设计, 通过分析训练样本的特征, 将待预测的样本进行分类, 对字符完成准确识别;
结果输出是通过公式计算器计算印刷体算式结果与手写结果进行对比, 判断算式作业是否作答正确完成反馈的程。

4 图像预处理

试卷字符识别过程中, 通过摄像头采集到的纸张作业图像信息由于受到光线产生的噪声、 书写的污点等干扰因素, 影响字符图像的提取效果。
为了得到完整的字符区域特征, 同时去除无关信息的干扰, 需要对图像进行预处理操作。

在这里插入图片描述

4.1 灰度二值化

灰度二值化是将图像先进行灰度处理, 再进行二值化处理。 经过灰度二值化处理的图像降低了像素的运算量, 同时突出图像中算式的特征。
灰度化是将采取到的彩色图像进行灰度值转换, 灰度化后的图像去除了彩色信息, 只保留了算式字符与背景之间的亮度信息, 图像中每个像素点都是介于 0 至 255
灰度值中的一种。

在这里插入图片描述

关键代码


#3、将 RGB 转为灰度图
def rgb2gray(rgb):
return np.dot(rgb[…,:3], [0.299, 0.587, 0.114])

gray = rgb2gray(lena)    
# 也可以用 plt.imshow(gray, cmap = plt.get_cmap('gray'))
plt.imshow(gray, cmap='Greys_r')
plt.axis('off')
plt.show()from scipy import misc
lena_new_sz = misc.imresize(lena, 0.5) # 第二个参数如果是整数,则为百分比,如果是tuple,则为输出图像的尺寸
plt.imshow(lena_new_sz)
plt.axis('off')
plt.show()附上imresize的用法
功能:改变图像的大小。
用法:
B = imresize(A,m)
B = imresize(A,m,method)
B = imresize(A,[mrows ncols],method)
B = imresize(...,method,n)
B = imresize(...,method,h)imrersize函数使用由参数method指定的插值运算来改变图像的大小。
method的几种可选值:
'nearest'(默认值)最近邻插值
'bilinear'双线性插值
'bicubic'双三次插值
B = imresize(A,m)表示把图像A放大m倍
B = imresize(...,method,h)中的h可以是任意一个FIR滤波器(h通常由函数ftrans2、fwind1、fwind2、或fsamp2等生成的二维FIR滤波器)。

4.2 形态学处理

形态学处理是通过一定形态的结构元素, 对图像产生基于形状的操作 。它可以在保持图像基本形状的基础上简化数据, 去除多余结构。
形态学运算主要包括开运算和闭运算, 这两个操作包含了膨胀和腐蚀。

在这里插入图片描述

算式图像经过形态学处理后, 实验效果如上图所示。 在图中可以看出左侧的算式图像经过形态学处理之后, 其断裂的乘号字符在右侧的算式图像中形成了连通区域。
形态处理后字符整体趋于完整, 边界变的平滑。

在手写字符识别的过程中, 由于手写字符的字迹大小、 粗细程度存在的随意性很大, 在特征提取的过程中, 相同字符的冗余度导致特征向量差异很大 。

因此对获取字符图像要进行适当的细化处理, 有利于特征提取的准确性。 图像细化指将二值图像进行骨架化操作的运算, 细化操作过程就是剥离字符图像上边缘轮廓的点,
细化操作要求字符骨架保持原有的笔画特征, 不能造成笔划断开, 同时具有连续性, 字符图像应尽量保留原始的结构特征。

在这里插入图片描述

关键代码


import cv2 as cv

img = cv.imread(r"C:\Users\Administrator\Desktop\chinese.png")
img_cvt = cv.cvtColor(img,cv.COLOR_BGR2GRAY)
ret,img_thr = cv.threshold(img_cvt,100,255,cv.THRESH_BINARY)
kernel = cv.getStructuringElement(cv.MORPH_RECT,(30,1)) #由于是1*30的矩阵,字体会被横向空隙的白色腐蚀掉,而下划线横向都是黑色,不会腐蚀
dst = cv.dilate(img_thr,kernel,iterations=1)  #由于是白底黑字,所有进行膨胀操作来去除黑色字体
cv.imshow("img_thr",img_thr)
cv.imshow("dst",dst)
cv.waitKey(0)
cv.destroyAllWindows()

4.3 算式提取

算式提取的主要任务是从纸张中找到其中一组算式的字符区域, 并将算式从所在的区域中提取出来。 经过算式提取操作,
可以针对每一组算式进行批改,同时也便于下一步的字符分割, 算式提取准确性对作业批改效果有直接的影响。二值化处理后的算式图像中算式的灰度值为 255,
背景的灰度值为 0。

采取基于投影的方法, 进行水平和垂直方向的投影对算式进行提取 , 由于字符图像和背景图像对比度较大, 背景几乎不存在噪音干扰,
因此投影分割可以取得较好的效果。

在这里插入图片描述

在这里插入图片描述

对图像进行列扫描, 得到垂直方向投影图, 投影后字符间隔的白色像素点的个数为 0, 在字符区域处形成波峰。 此时根据多个连续的波峰图像,
记录开始和结束的位置, 就可求得算式的左右边界, 进行分割得到仅包含一组算式区域的图像。

在这里插入图片描述
在这里插入图片描述

4.4 倾斜校正

在图像获取的过程中, 由于摄像头拍摄角度和作业图像有时会产生一个倾斜角度, 此时图像会发生垂直倾斜, 如果不对算式图像进行倾斜校正处理,
可能会无法正确识别出字符。 因此算式提取后要对算式图像进行倾斜校正, 采用基于 Hough 变换的方法,
其原理为图像中的直线和曲线经过变换映射到参数空间上的一个点, 通过累加的峰值检验图像中的直线和曲线。 Hough
变换的实质是将图像中一定形状元素的点进行聚类, 通过解析式将参数空间对应的点联系起来。

在这里插入图片描述

4.5 字符分割

字符分割指是将一组算式中的多个字符图像根据字符之间的空隙, 分割成多张只包含单个字符的图像,
字符分割需要保证对每个字符进行完整的提取。作业字符图像是一连串的数字算式字符, 由于算式中包含除号和等号不连通的字符图像,
因此不便采取投影法对字符进行分割。

在这里插入图片描述

5 字符识别

支持向量机是一种新的解决分类问题的机器学习方法, 基于统计学习理论,采用结构风险最小原则。 其原理是在训练样本集通过少量支持向量,
自动构造分类函数建立一个最大间隔分类平面, 以此解决分类问题。 支持向量机不需要构建网络结构设计, 通过非线性变换解决高维空间中样本识别问题。
支持向量机越来越多的应用到了字符识别中, 表现出较好的字符识别效果。

5.1 支持向量机原理

支持向量机(Support Vector Machine, SVM), 是 Vapnik [35] 研究小组在统计学习理论基础上, 于 1995
年针对分类问题提出的最佳分类准则。 SVM 是一种基于统计学习理论的模式识别方法, 主要应用于解决分类和回归问题。
传统的统计学理论基于样本无穷大的统计性质, SVM 专门针对有限样本, 算法转化成一个二次型寻优问题, 得到的是全局最优解。 它具有解的唯一性,
经过非线性变化转化到高维特征空间, 其算法与样本的复杂度无关, 不依赖输入空间的维数,得到的最优解优于传统的学习方法 。 因此迅速的发展起来,
在手写字符识别领域取得了巨大的成功。

对于最优间隔平面分类问题, 根据样本分布的情况分为线性可分与非线性可分进行讨论。 在线性可分的情况下, 其目标就是寻找最优间隔超平面, 将样本准确的分开。
根据少量支持向量确定平面, 保证样本数据与超平面距离最大,如图所示。

最优分类面示意图
在这里插入图片描述

5.2 基于SVM的字符识别

数学算式作业中包含印刷体字符和手写体字符, 将这些字符全部放在一个分类器中会导致分类过于复杂, 类别过多会使识别速率降低。
因此按照字符的分布位置将分类器分为两种类型: 印刷体字符分类器和手写字符分类器。 采取一对一分类的方法对印刷体字符和手写体字符分别设计了二分类器,
对于算式中同时包含印刷体和手写体数字字符, 选用相应的分类器, 会提高识别的准确性和速率。 如图所示, 根据字符在算式中的位置, 选用对应的分类器。

在这里插入图片描述

每个分类器只能将一个字符与其他字符分开, 对于手写字符而言, 其中一类字符样本的特征向量作为正集(标签对应的值为+1), 其余 9
个样本的特征向量做负集(标签对应的值为-1)。 按照这种形式依次划分, 将训练集依次进行训练, 可得到 10 个二分类器, 测试阶段将未知样本输入到这 10
个分类器进行分类判断, 决策结果取相应结果的最大值。 若输出的值为+1, 则对应相应类的字符。

网格特征是字符识别中常用的特征提取方法之一, 体现了字符形状的整体分布。 其中粗网格特征提取的方法是将字符图像等分成多个网格区域, 进行特征提取。
首先将归一化的字符样本图像, 其中大小为 128 128, 等分成 16 16 个网格, 如下图所示。
统计每个网格中黑色像素点占整个网格图像的有效像素比例, 最后将特征值按照网格排列转换为向量形式。

在这里插入图片描述

5.3 SVM算法实现

import numpy as npimport randomimport matplotlib.pyplot as plt'''类名称:dataStruct功能:用于存储一些需要保存或者初始化的数据'''class dataStruct:def __init__(self,dataMatIn,labelMatIn,C,toler,eps):self.dataMat = dataMatIn                        #样本数据self.labelMat = labelMatIn                      #样本标签self.C = C                                      #参数Cself.toler = toler                              #容错率self.eps = eps                                  #乘子更新最小比率self.m = np.shape(dataMatIn)[0]                 #样本数self.alphas = np.mat(np.zeros((self.m,1)))      #拉格朗日乘子alphas,shape(m,1),初始化全为0self.b = 0                                      #参数b,初始化为0self.eCache = np.mat(np.zeros((self.m,2)))      #误差缓存,'''函数名称:loadData函数功能:读取文本文件中的数据,以样本数据和标签的形式返回输入参数:filename       文本文件名返回参数:dataMat        样本数据labelMat       样本标签'''def loadData(filename):dataMat = [];labelMat = []fr = open(filename)for line in fr.readlines():                 #逐行读取lineArr = line.strip().split('\t')      #滤除行首行尾空格,以\t作为分隔符,对这行进行分解num = np.shape(lineArr)[0]     dataMat.append(list(map(float,lineArr[0:num-1])))#这一行的除最后一个被添加为数据labelMat.append(float(lineArr[num-1]))#这一行的最后一个数据被添加为标签dataMat = np.mat(dataMat)labelMat = np.mat(labelMat).Treturn dataMat,labelMat'''函数名称:takeStep函数功能:给定alpha1和alpha2,执行alpha1和alpha2的更新,执行b的更新输入参数:i1            alpha1的标号i2            alpha2的标号dataMat       样本数据labelMat      样本标签返回参数:如果i1==i2 or L==H or eta<=0 or alpha更新前后相差太小,返回0正常执行,返回1'''   def takeStep(i1,i2,dS):#如果选择了两个相同的乘子,不满足线性等式约束条件,因此不做更新if(i1 == i2):print("i1 == i2")return 0#从数据结构中取得需要用到的数据alpha1 = dS.alphas[i1,0]alpha2 = dS.alphas[i2,0]y1 = dS.labelMat[i1]y2 = dS.labelMat[i2]#如果E1以前被计算过,就直接从数据结构的cache中读取它,这样节省计算量,#如果没有历史记录,就计算E1if(dS.eCache[i1,0] == 1):E1 = dS.eCache[i1,1]else:u1 = (np.multiply(dS.alphas,dS.labelMat)).T * np.dot(dS.dataMat,dS.dataMat[i1,:].T) + dS.b     #计算SVM的输出值u1E1 = float(u1 - y1)    #误差E1#dS.eCache[i1] = [1,E1] #存到cache中#如果E2以前被计算过,就直接从数据结构的cache中读取它,这样节省计算量,#如果没有历史记录,就计算E2if(dS.eCache[i2,0] == 1):E2 = dS.eCache[i2,1]else:u2 = (np.multiply(dS.alphas,dS.labelMat)).T * np.dot(dS.dataMat,dS.dataMat[i2,:].T) + dS.b     #计算SVM的输出值u2E2 = float(u2 - y2)    #误差E2#dS.eCache[i2] = [1,E2] #存到cache中        s = y1*y2#计算alpha2的上界H和下界Lif(s==1):       #如果y1==y2L = max(0,alpha1+alpha2-dS.C)H = min(dS.C,alpha1+alpha2)elif(s==-1):    #如果y1!=y2L = max(0,alpha2-alpha1)H = min(dS.C,dS.C+alpha2-alpha1)if(L==H):print("L==H")return 0#计算学习率etak11 = np.dot(dS.dataMat[i1,::],dS.dataMat[i1,:].T)k12 = np.dot(dS.dataMat[i1,::],dS.dataMat[i2,:].T)k22 = np.dot(dS.dataMat[i2,::],dS.dataMat[i2,:].T)eta = k11 - 2*k12 +k22if(eta > 0):#正常情况下eta是大于0的,此时计算新的alpha2,新的alpha2标记为a2a2 = alpha2 + y2*(E1-E2)/eta#这个公式的推导,曾经花费了我很多精力,现在写出来却是如此简洁,数学真是个好东西#对a2进行上下界裁剪if(a2 < L):a2 = Lelif(a2 > H):a2 = Helse:#非正常情况下,也有可能出现eta《=0的情况print("eta<=0")return 0'''Lobj = Hobj = if(Lobj < Hobj-eps):a2 = Lelif(Lobj > Hobj+eps):a2 = Helse:a2 = alpha2'''#如果更新量太小,就不值浪费算力继续算a1和b,不值得对这三者进行更新if(abs(a2-alpha2) < dS.eps*(a2+alpha2+dS.eps)):print("so small update on alpha2!")return 0#计算新的alpha1,标记为a1a1 = alpha1 + s*(alpha2 - a2)#计算b1和b2,并且更新bb1 = -E1 + y1*(alpha1 - a1)*np.dot(dS.dataMat[i1,:],dS.dataMat[i1,:].T) + y2*(alpha2 - a2)*np.dot(dS.dataMat[i1,:],dS.dataMat[i2,:].T) + dS.bb2 = -E2 + y1*(alpha1 - a1)*np.dot(dS.dataMat[i1,:],dS.dataMat[i2,:].T) + y2*(alpha2 - a2)*np.dot(dS.dataMat[i2,:],dS.dataMat[i2,:].T) + dS.bif(a1>0 and a1<dS.C):dS.b = b1elif(a2>0 and a2<dS.C):dS.b = b2else:dS.b = (b1 + b2) / 2#用a1和a2更新alpha1和alpha2dS.alphas[i1] = a1dS.alphas[i2] = a2#由于本次alpha1、alpha2和b的更新,需要重新计算Ecache,注意Ecache只存储那些非零的alpha对应的误差validAlphasList = np.nonzero(dS.alphas.A)[0]   #所有的非零的alpha标号列表dS.eCache = np.mat(np.zeros((dS.m,2)))#要把Ecache先清空for k in validAlphasList:#遍历所有的非零alphauk = (np.multiply(dS.alphas,dS.labelMat).T).dot(np.dot(dS.dataMat,dS.dataMat[k,:].T)) + dS.byk = dS.labelMat[k,0]Ek = float(uk-yk)dS.eCache[k] = [1,Ek]print ("updated")return 1'''函数名称:examineExample函数功能:给定alpha2,如果alpha2不满足KKT条件,则再找一个alpha1,对这两个乘子进行一次takeStep输入参数:i2            alpha的标号dataMat       样本数据labelMat      样本标签返回参数:如果成功对一对乘子alpha1和alpha2执行了一次takeStep,返回1;否则,返回0'''def examineExample(i2,dS):#从数据结构中取得需要用到的数据y2 = dS.labelMat[i2,0]alpha2 = dS.alphas[i2,0]#如果E2以前被计算过,就直接从数据结构的cache中读取它,这样节省计算量,#如果没有历史记录,就计算E2if(dS.eCache[i2,0] == 1):E2 = dS.eCache[i2,1]else:u2 = (np.multiply(dS.alphas,dS.labelMat)).T * np.dot(dS.dataMat,dS.dataMat[i2,:].T) + dS.b#计算SVM的输出值u2E2 = float(u2 - y2)#误差E2#dS.eCache[i2] = [1,E2]r2 = E2*y2#如果当前的alpha2在一定容忍误差内不满足KKT条件,则需要对其进行更新if((r2<-dS.toler and alpha2<dS.C) or (r2>dS.toler and alpha2>0)):'''#随机选择的方法确定另一个乘子alpha1,多执行几次可可以收敛到很好的结果,就是效率比较低i1 = random.randint(0, dS.m-1)if(takeStep(i1,i2,dS)):return 1'''#启发式的方法确定另一个乘子alpha1nonZeroAlphasList = np.nonzero(dS.alphas.A)[0].tolist()#找到所有的非0的alphanonCAlphasList = np.nonzero((dS.alphas-dS.C).A)[0].tolist()#找到所有的非C的alphanonBoundAlphasList = list(set(nonZeroAlphasList)&set(nonCAlphasList))#所有非边界(既不=0,也不=C)的alpha#如果非边界的alpha数量至少两个,则在所有的非边界alpha上找到能够使\E1-E2\最大的那个E1,对这一对乘子进行更新if(len(nonBoundAlphasList)  > 1):maxE = 0maxEindex = 0for k in nonBoundAlphasList:if(abs(dS.eCache[k,1]-E2)>maxE):maxE = abs(dS.eCache[k,1]-E2)maxEindex = ki1 = maxEindexif(takeStep(i1,i2,dS)):return 1#如果上面找到的那个i1没能使alpha和b得到有效更新,则从随机开始处遍历整个非边界alpha作为i1,逐个对每一对乘子尝试进行更新randomStart = random.randint(0,len(nonBoundAlphasList)-1)for i1 in range(randomStart,len(nonBoundAlphasList)):if(i1 == i2):continueif(takeStep(i1,i2,dS)):return 1for i1 in range(0,randomStart):if(i1 == i2):continueif(takeStep(i1,i2,dS)):return 1#如果上面的更新仍然没有return 1跳出去或者非边界alpha数量少于两个,这种情况只好从随机开始的位置开始遍历整个可能的i1,对每一对尝试更新 randomStart = random.randint(0,dS.m-1)for i1 in range(randomStart,dS.m):if(i1 == i2):continueif(takeStep(i1,i2,dS)):return 1for i1 in range(0,randomStart):if(i1 == i2):continueif(takeStep(i1,i2,dS)):return 1   '''i1 = random.randint(0,dS.m-1)if(takeStep(i1,i2,dS)):return 1 '''#如果实在还更新不了,就回去重新选择一个alpha2吧,当前的alpha2肯定是有毒    return 0'''函数名称:SVM_with_SMO函数功能:用SMO写的SVM的入口函数,里面采用了第一个启发式确定alpha2,即在全局遍历和非边界遍历之间来回repeat,直到不再有任何更新输入参数:dS            dataStruct类的数据返回参数:None'''def SVM_with_SMO(dS):#初始化控制变量,确保第一次要全局遍历numChanged = 0examineAll = 1#显然,如果全局遍历了一次,并且没有任何更新,此时examineAll和numChanged都会被置零,算法终止while(numChanged > 0 or examineAll):numChanged = 0if(examineAll):for i in range(dS.m):numChanged += examineExample(i,dS)else:for i in range(dS.m):if(dS.alphas[i] == 0 or dS.alphas[i] == dS.C):continuenumChanged += examineExample(i,dS)if(examineAll == 1):examineAll = 0elif(numChanged == 0):examineAll = 1'''函数名称:cal_W函数功能:根据alpha和y来计算W输入参数:dS         dataStruct类的数据返回参数:W          超平名的法向量W            '''def cal_W(dS):W = np.dot(dS.dataMat.T,np.multiply(dS.labelMat,dS.alphas))return W'''函数名称:showClassifer函数功能:画出原始数据点、超平面,并标出支持向量输入参数:dS         dataStruct类的数据W          超平名的法向量W    返回参数:None'''    def showClassifer(dS,w):#绘制样本点dataMat = dS.dataMat.tolist()data_plus = []                                  #正样本data_minus = []                                 #负样本for i in range(len(dataMat)):if dS.labelMat[i,0] > 0:data_plus.append(dataMat[i])else:data_minus.append(dataMat[i])data_plus_np = np.array(data_plus)              #转换为numpy矩阵data_minus_np = np.array(data_minus)            #转换为numpy矩阵plt.scatter(np.transpose(data_plus_np)[0], np.transpose(data_plus_np)[1], s=30, alpha=0.7, c='r')   #正样本散点图plt.scatter(np.transpose(data_minus_np)[0], np.transpose(data_minus_np)[1], s=30, alpha=0.7,c='g') #负样本散点图#绘制直线x1 = max(dataMat)[0]x2 = min(dataMat)[0]a1, a2 = wb = float(dS.b)a1 = float(a1[0])a2 = float(a2[0])y1, y2 = (-b- a1*x1)/a2, (-b - a1*x2)/a2plt.plot([x1, x2], [y1, y2])#找出支持向量点for i, alpha in enumerate(dS.alphas):if abs(alpha) > 0.000000001:x, y = dataMat[i]plt.scatter([x], [y], s=150, c='none', alpha=0.7, linewidth=1.5, edgecolor='red')plt.xlabel("happy 520 day, 2018.06.13")plt.savefig("svm.png")plt.show()if __name__ == '__main__':dataMat,labelMat = loadData("testSet.txt")dS = dataStruct(dataMat, labelMat, 0.6, 0.001, 0.01)#初始化数据结构 dataMatIn, labelMatIn,C,toler,epsfor i in range(0,1):#只需要执行一次,效果就非常不错SVM_with_SMO(dS)W = cal_W(dS)showClassifer(dS,W.tolist())

6 算法测试

输入图像

在这里插入图片描述

预处理结果

在这里插入图片描述

识别结果

在这里插入图片描述

7 系统实现

系统主要流程如下

在这里插入图片描述

对在 PC 软件平台通过 MFC 界面中实现各模块操作, 系统界面如图所示。

系统界面采用模块化设计, 按照界面分布分为图像显示模块、 按键功能模块、 图像预处理模块、 批改结果输出四个模块组成。

主要内容包括:

  • 显示获取作业图像的基本信息;
  • 通过按键控制相应功能;
  • 显示预处理后图像的效果;输出识别的字符信息和批改的结果。

在这里插入图片描述
图像显示模块, 通过打开摄像头按键, 将摄像头获取到的纸张作业图像实时信息传送到计算机中, 获取的图像显示在界面左侧窗口, 界面运行结果如图所示。

在这里插入图片描述

按键功能模块, 通过算式提取按键, 对纸张中单个算式整体区域进行选框提取, 运行结果如图所示,
此时算式检测的结果在原图像上用矩形框标记,在界面右侧显示提取到的算式效果。

在这里插入图片描述

图像处理模块, 通过检测识别按键完成字符分割和识别, 在界面右侧窗口显示预处理后的图像效果。 批改结果输出模块,
在界面下框中显示字符的识别结果以及手写的计算结果, 同时在右下角窗口显示解答正误, 输出得到的批改信息。 同时对整个过程运行的时间进行统计,
最后保存按键将错误的批改结果保存, 便于后期修改。 此时系统运行界面如图所示。

在这里插入图片描述

8 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

相关文章:

挑战杯 机器视觉的试卷批改系统 - opencv python 视觉识别

文章目录 0 简介1 项目背景2 项目目的3 系统设计3.1 目标对象3.2 系统架构3.3 软件设计方案 4 图像预处理4.1 灰度二值化4.2 形态学处理4.3 算式提取4.4 倾斜校正4.5 字符分割 5 字符识别5.1 支持向量机原理5.2 基于SVM的字符识别5.3 SVM算法实现 6 算法测试7 系统实现8 最后 0…...

Node.js 自带的 http 模块来实现一个简单的本地服务器

1.创建一个 server.js 文件&#xff1a; const http require(http); const fs require(fs); const path require(path);const server http.createServer((req, res) > {// 获取请求的文件路径const filePath path.join(__dirname, dist, req.url);// 读取文件内容并返…...

c++ 设计模式模版方法

最初版本 #pragma onceclass Library { public:void Step1(){}void Step3(){}void Step5(){} };class Appliacation { public:void Step2(){}void Step4(){} };int main() {Library lib;Appliacation app;lib.Step1();app.Step2();lib.Step3();app.Step4();lib.Step5(); }最终…...

踏上机器学习的征程:探索基础概念与学习模式

摘要: 机器学习是当今科技领域最具前沿和应用价值的技术之一,它正在改变我们对数据的理解和利用方式。本文将引导读者深入了解机器学习的基本概念,包括监督学习、无监督学习和半监督学习等,并通过生动的例子解释这些概念,帮助读者迈出学习机器学习的第一步。 导言: 随着…...

基于YOLO的自动驾驶目标检测研究综述

摘要:自动驾驶是人工智能发展领域的一个重要方向,拥有良好的发展前景,而实时准确的目标检测与识别是保证自动驾驶汽车安全稳定运行的基础与关键。回顾自动驾驶和目标检测技术的发展历程,综述了YOLO算法在车辆、行人、交通标志、灯光、车道线等目标检测上的应用,同时对比分…...

深度学习-解读GoogleNet深度学习网络

深度学习-解读GoogleNet深度学习网络 深度学习中&#xff0c;经典网络引领一波又一波的技术革命&#xff0c;从LetNet到当前最火的GPT所用的Transformer&#xff0c;它们把AI技术不断推向高潮。2012年AlexNet大放异彩&#xff0c;它把深度学习技术引领第一个高峰&#xff0c;打…...

【LeetCode: 2684. 矩阵中移动的最大次数 + dfs】

&#x1f680; 算法题 &#x1f680; &#x1f332; 算法刷题专栏 | 面试必备算法 | 面试高频算法 &#x1f340; &#x1f332; 越难的东西,越要努力坚持&#xff0c;因为它具有很高的价值&#xff0c;算法就是这样✨ &#x1f332; 作者简介&#xff1a;硕风和炜&#xff0c;…...

第五节:使用SMB开发WebSocket通信

一、概述 本节主要讲解在SMB中如何进行websocket快速开发&#xff0c;实现客户端连接、关闭、消息通讯等功能。 示例下载&#xff1a;https://download.csdn.net/download/lllllllllluoyi/88949743 二、创建WebSocket服务器 1、在csdnProject工程中新建一个消息流。 添加W…...

Nginx和Ribbon实现负载均衡的区别

Nginx和Ribbon的区别 1. Nginx服务器端负载均衡&#xff1a; 1、Nginx是客户端所有请求统一交给nginx&#xff0c;由nginx进行实现负载均衡请求转发&#xff0c;属于服务器端负载均衡。即请求有nginx服务器端进行转发。 3、Nginx是服务端的负载均衡&#xff0c;Ribbon是客户端…...

流畅的Python(十九)-动态属性和特性

一、核心要义 在Python中,数据的属性和处理数据的方法,统称属性。方法&#xff0c;只是可调用的属性。除了这两者之外,我们还可以创建特性(property),在不改变类接口的前提下,使用存取方法(即读值方法和设值方法)修改数据属性。 二、代码示例 0、相关知识点 #!/usr/bin/env…...

确保云原生部署中的网络安全

数字环境正在以惊人的速度发展&#xff0c;组织正在迅速采用云原生部署和现代化使用微服务和容器构建的应用程序&#xff08;通常运行在 Kubernetes 等平台上&#xff09;&#xff0c;以推动增长。 无论我们谈论可扩展性、效率还是灵活性&#xff0c;对于努力提供无与伦比的用…...

【分布式websocket 】前端vuex管理客户端消息crud!使用localStorage来存储【第19期】

前言 聊天系统客户端是要存储消息的&#xff0c;因为所有所有的历史消息都从服务器拉的话一方面服务器压力大&#xff0c;另一方面也耗费用户流量。所以客户端存储消息是势在必行的。如何存储呢上一篇文章也写了&#xff0c;大概就是浏览器的话是localStorage或者IndexedDB。然…...

venv uvicorn python 虚拟服务器外网无法访问

python -m venv .venv source ./.venv/bin/activate pip install -r requirements.txt ./run.sh source ./.venv/bin/activate uvicorn main:app --reload 虚拟web服务器外网访问控制台启动命令用以下代码启动 uvicorn main:app --host 0.0.0.0 --port 8501 --reload 启动到后…...

一款博客网站源码

一款博客网站源码 源码软件库 为大家内置了主题 清爽又强大真正的永久可用的一条源码&#xff0c;该版本为整合版本&#xff0c;内置了Joe主题&#xff0c;搭建后直接启用即可~ 安装环境要求&#xff1a; PHP 7.2 以上 MySQL, PostgreSQL, SQLite 任意一种数据库支持&#xff…...

Mr-Robot1靶场练习靶场推荐小白入门练习靶场渗透靶场bp爆破wordpress

下载链接&#xff1a; Mr-Robot: 1 ~ VulnHub 安装&#xff1a; 打开vxbox&#xff0c;菜单栏----管理----导入虚拟电脑 选择下载完的ova文件&#xff0c;并修改想要保存的位置&#xff08;也可以保持默认位置&#xff09; 导入完成后可以根据自己的情况去配置网络链接方式 完成…...

数据仓库的设计开发应用(三)

目录 五、数据仓库的实施&#xff08;一&#xff09;数据仓库的创建&#xff08;二&#xff09;数据抽取转换加载 六、数据仓库系统的开发&#xff08;一&#xff09;开发任务&#xff08;二&#xff09;开发方法&#xff08;三&#xff09;系统测试 七、数据仓库系统的应用&am…...

【04】WebAPI

WebAPI 和标准库不同,WebAPI 是浏览器提供的一套 API,用于操作浏览器窗口和界面 WebAPI 中包含两个部分: BOM:Browser Object Model,浏览器模型,提供和浏览器相关的操作DOM:Document Object Model,文档模型,提供和页面相关的操作BOM BOM 提供了一系列的对象和函数,…...

数据预处理在数据挖掘中的重要性

数据挖掘作为从大量数据中提取有用信息和知识的过程&#xff0c;其结果的准确性和可靠性直接受到数据质量的影响。因此&#xff0c;数据预处理在数据挖掘中扮演着至关重要的角色。让我们探讨数据质量对数据挖掘结果的影响&#xff0c;并介绍常见的数据预处理方法以及它们如何提…...

Java并发编程—JUC线程池架构

Java并发编程&#xff08;JUC&#xff0c;Java Utilities Concurrency&#xff09;中的线程池架构是Java提供的一种用于管理和复用线程的机制。线程池的主要目标是减少线程创建和销毁的开销&#xff0c;提高系统的响应速度&#xff0c;并通过合理的线程管理和资源分配&#xff…...

Android input输入子系统

一.Android input输入子系统简介 Input系统是Android系统中负责处理用户输入操作的核心组件&#xff0c;它负责从各种输入设备&#xff08;如屏幕、键盘、鼠标等&#xff09;获取原始的输入事件&#xff08;如按键、触摸、滑动等&#xff09;&#xff0c;并将其转换为Android应…...

如何在webapp中于动发布一个应用

目录 第一步&#xff1a;在webapp文件夹内自定义文件夹第二步&#xff1a;生成一个文本&#xff0c;并把后缀改为 .html第三步&#xff1a;进入bin文件夹打开服务第四步&#xff1a;打开方式选择java第六步&#xff1a;输入你想输出的东西第七步&#xff1a;双击运行即可 第一步…...

部署一个本地的ChatGPT(Ollama)

一 下载Ollama Ollama下载地址&#xff1a;https://ollama.com/download 下载完后 二 安装运行 双击下载好的OllamaSetup.exe开发 安装Ollama: 安装完成后&#xff0c;多了一个Ollama的菜单如下图 &#xff1a; Ollama安装好默认是配置开机运行&#xff0c;如果没有运行可以在…...

Vue 3中的reactive:响应式状态的全面管理

&#x1f90d; 前端开发工程师、技术日更博主、已过CET6 &#x1f368; 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 &#x1f560; 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》 &#x1f35a; 蓝桥云课签约作者、上架课程《Vue.js 和 E…...

【网络】详解HTTPS及探究加密过程

目录 一、什么是HTTPS1、加密解密是什么2、为什么要加密3、常见的加密方式1、对称加密2、非对称加密 二、探究HTTPS如何实现加密1、方案一----只使用对称加密2、方案二----只使用非对称加密3、方案三----双方都使用非对称加密4、方案四----非对称加密 对称加密5、中间人攻击6、…...

【C语言】字符与字符串---从入门到入土级详解

&#x1f984;个人主页:修修修也 &#x1f38f;所属专栏:C语言 ⚙️操作环境:Visual Studio 2022 目录 一.字符类型和字符数组&#xff08;串&#xff09;简介 1.ASCII 2.定义&#xff0c;初始化&#xff0c;使用 1>字符的定义及初始化 2>字符串的定义及初始化 二.…...

Github Copilot 工具,无需账号,一键激活

① 无需账号&#xff0c;100%认证成功&#xff01;0风险&#xff0c;可联网可更新&#xff0c;&#xff0c;支持copilot版本升级&#xff0c;支持chat ② 支持windows、mac、linux系统等设备 ③一号通用&#xff0c;支持所有IDE(AppCode,CLion,DataGrip,GoLand,IntelliJ IDEA …...

node: -max-old-space-size=xxx is not allowed in NODE_OPTIONS

问题描述 在启动node项目时&#xff0c;出现了OOM参照网上的处理方案&#xff0c;设置了环境变量&#xff1a; export NODE_OPTIONS"–max-old-space-size8192"当再次通过npm run docs:dev运行node项目的时候出现了如下错误&#xff1a; node: -max-old-space-siz…...

k8s编排系统

Kubernetes&#xff08;简称K8s&#xff09;是一个开源的容器编排系统&#xff0c;由Google基于其内部的Borg项目开发&#xff0c;并于2014年正式对外发布。目前&#xff0c;Kubernetes已成为云原生计算基金会&#xff08;Cloud Native Computing Foundation, CNCF&#xff09;…...

samba服务器的配置

需求&#xff1a;在Linux上搭建一个文件共享服务&#xff0c;创建不同的账号给予不同的权限&#xff0c;在windows可以直接访问该共享目录 介绍 Samba 是一个强大的工具&#xff0c;使得不同操作系统之间可以无缝地共享文件和资源&#xff0c;促进了跨平台环境下的协作和通信…...

H12-821_279

279.第三类LSA的Link ID是: A.所描述的ABR的Router ID B.所在网段上DR的端口IP地址 C.所描述的目的网段 D.生成这条LSA的路由器的Router ID 答案&#xff1a;C 注释&#xff1a; OSPF的LSA可以单独描述网络信息、拓扑信息&#xff0c;也可以同时描述网络信息和拓扑信息。 LSA3…...