当前位置: 首页 > news >正文

利用 Python 处理遥感影像数据:计算年度平均影像

在地球科学、气象学以及环境监测等领域,遥感影像数据是一种重要的信息源,它们可以提供地表的地形、植被覆盖、气候变化等丰富信息。然而,随着观测技术的进步,我们通常会获得大量的遥感影像数据,如何高效地处理和分析这些数据成为了一项挑战。本文将介绍如何利用 Python 中的 GDAL 库处理遥感影像数据,并通过计算年度平均影像来提取更有意义的信息。

1. 环境准备

在开始之前,确保你已经安装了 Python 和 GDAL 库。如果还没有安装,你可以通过 pip 进行安装:

pip install gdal

2. 处理单个 TIFF 文件

我们首先定义了一个函数 process_tiff_folder,它用于处理一个包含多个 TIFF 文件的文件夹。在这个函数中,我们遍历文件夹中的每个 TIFF 文件,读取其数据并提取地理信息。然后,我们将每个像素的经纬度与高程值一起保存在一个二维数组中,以便后续处理使用。

3. 计算年度平均影像

接下来,我们定义了一个名为 calculate_yearly_mean 的函数,它用于计算给定文件夹中所有影像文件的年度平均影像。在这个函数中,我们首先读取输入文件夹中的所有影像文件,并创建一个字典来存储每年的影像数据。然后,我们遍历每个影像文件,累加每年的像素值和像素计数。最后,我们计算每年的平均影像,并将结果保存为新的 TIFF 文件。

4. 示例代码

下面是一个示例代码,演示了如何使用上述函数处理遥感影像数据:

# 输入文件夹和输出文件夹
input_folder = "path/to/input/folder"
output_folder = "path/to/output/folder"# 获取栅格数据
cols = process_tiff_folder(input_folder, output_folder)# 计算年度平均影像
calculate_yearly_mean(input_folder, output_folder)

5. 完整代码

import os
import numpy as np
from osgeo import gdaldef process_tiff_folder(folder_path, output_folder):for root, dirs, files in os.walk(folder_path):for file in files:if file.endswith(".tif"):tif_path = os.path.join(root, file)folder_name = os.path.basename(root)  # 获取文件夹名称dataset = gdal.Open(tif_path)  # 打开tif# 获取行数列数和地理信息geo_information = dataset.GetGeoTransform()col = dataset.RasterXSizerow = dataset.RasterYSizedem = dataset.GetRasterBand(1).ReadAsArray()# 获取行列数,对应其经纬度,j对于x坐标cols = []for y in range(row):rows = []for x in range(col):# 有效高程if dem[y][x] != dataset.GetRasterBand(1).GetNoDataValue():# 输出经纬度lon = geo_information[0] + x * geo_information[1] + y * geo_information[2]lat = geo_information[3] + x * geo_information[4] + y * geo_information[5]child = [lon, lat, dem[y][x], y, x]rows.append(child)cols.append(rows)return colsdef calculate_yearly_mean(input_folder, output_folder):# 获取输入文件夹中的所有影像文件路径input_files = [os.path.join(input_folder, f) for f in os.listdir(input_folder) if f.endswith('.tif')]# 创建输出文件夹if not os.path.exists(output_folder):os.makedirs(output_folder)# 初始化年度影像字典yearly_images = {}# 遍历所有输入影像文件for file_path in input_files:# 从文件名中提取年份和月份year = int(file_path.split('_')[1])month = int(file_path.split('_')[2].split('.')[0])# 读取影像数据dataset = gdal.Open(file_path)image = dataset.GetRasterBand(1).ReadAsArray()# 处理无效值invalid_value = dataset.GetRasterBand(1).GetNoDataValue()image[image == invalid_value] = np.nan# 初始化年份数据字典if year not in yearly_images:yearly_images[year] = {'sum': np.zeros(image.shape), 'count': np.zeros(image.shape)}# 累加每年的像素值和计数yearly_images[year]['sum'] += np.where(np.isnan(image), 0, image)yearly_images[year]['count'] += np.where(np.isnan(image), 0, 1)# 遍历年度影像字典,计算每年的平均影像并保存for year, data in yearly_images.items():# 计算每年的平均影像yearly_mean = np.divide(data['sum'], data['count'], out=np.zeros_like(data['sum']), where=data['count'] != 0)# 获取输入影像的地理转换信息dataset = gdal.Open(input_files[0])geotransform = dataset.GetGeoTransform()projection = dataset.GetProjection()# 创建输出影像driver = gdal.GetDriverByName('GTiff')output_path = os.path.join(output_folder, f'{year}_mean.tif')output_dataset = driver.Create(output_path, yearly_mean.shape[1], yearly_mean.shape[0], 1, gdal.GDT_Float32)output_dataset.SetGeoTransform(geotransform)output_dataset.SetProjection(projection)output_dataset.GetRasterBand(1).WriteArray(yearly_mean)# 关闭输出数据集output_dataset = Noneprint("年度平均影像计算完成!")# 输入文件夹和输出文件夹
input_folder = r"D:\lky\person\month"
output_folder = r"D:\lky\person\month_year"# 获取栅格数据
cols = process_tiff_folder(input_folder, output_folder)# 计算年度平均影像
calculate_yearly_mean(input_folder, output_folder)

6. 结论

通过本文介绍的方法,我们可以轻松地处理遥感影像数据,并从中提取出更有意义的信息,如年度平均影像。这些信息对于地球科学研究、自然资源管理以及环境监测等领域具有重要意义,帮助我们更好地理解和应对地球上的变化。

通过利用 Python 编程和相关库,我们可以实现对遥感影像数据的高效处理和分析,为科学研究和实际应用提供强大的工具支持。

相关文章:

利用 Python 处理遥感影像数据:计算年度平均影像

在地球科学、气象学以及环境监测等领域,遥感影像数据是一种重要的信息源,它们可以提供地表的地形、植被覆盖、气候变化等丰富信息。然而,随着观测技术的进步,我们通常会获得大量的遥感影像数据,如何高效地处理和分析这…...

【Leetcode-73.矩阵置零】

题目: 给定一个 m x n 的矩阵,如果一个元素为 0 ,则将其所在行和列的所有元素都设为 0 。请使用 原地 算法。 示例 1: 输入:matrix [[1,1,1],[1,0,1],[1,1,1]] 输出:[[1,0,1],[0,0,0],[1,0,1]]示例 2&…...

redis 常见的异常

目录 一、缓存穿透 1、概念 解决方案 (1)布隆过滤器 (2)、缓存空对象 二、缓存雪崩 1、概念 解决方案 (1)redis高可用 (2)限流降级 (3)数据预热 一、缓存穿透 1、概念 缓…...

npm包、全局数据共享、分包

使用 npm 包 小程序对 npm 的支持与限制 目前,小程序中已经支持使用 npm 安装第三方包,从而来提高小程序的开发效率。但是,在小程序中使用npm 包有如下 3 个限制: ① 不支持依赖于 Node.js 内置库的包 ② 不支持依赖于浏览器内置…...

UnityShader:IBL

效果: 实现: Shader "MyShader/IBL" {Properties{_CubeMap ("环境贴图", Cube) "white" {}_Exposure("曝光",float)1.0_Color("颜色",color)(1,1,1,1)_NormalMap("法线贴图",2d)"bu…...

每日五道java面试题之mybatis篇(三)

目录: 第一题. MyBatis的框架架构设计是怎么样的?第二题. 为什么需要预编译?第三题. Mybatis都有哪些Executor执行器?它们之间的区别是什么?第四题. Mybatis中如何指定使用哪一种Executor执行器?第五题. Mybatis是否支持延迟加载…...

C#开发五子棋游戏:从新手到高手的编程之旅

C#开发五子棋游戏:从新手到高手的编程之旅 目录 一、引言 二、项目规划与设计思路 三、棋盘与棋子的数据模型构建 四、交互式用户界面设计 五、核心游戏逻辑实现 一、引言 五子棋,作为一种古老的策略型棋类游戏,在全球拥有广泛的爱好者…...

ELK日志管理实现的3种常见方法

ELK日志管理实现的3种常见方法 1. 日志收集方法 1.1 使用DaemonSet方式日志收集 通过将node节点的/var/log/pods目录挂载给以DaemonSet方式部署的logstash来读取容器日志,并将日志吐给kafka并分布写入Zookeeper数据库.再使用logstash将Zookeeper中的数据写入ES,并通过kibana…...

深度强化学习01

Random variable Probability Density Function 期望 Random Sampling 学习视频 这绝对是我看过最好的深度强化学习!从入门到实战,7小时内干货不断!_哔哩哔哩_bilibili...

C++ 智能指针的使用

智能指针类型 在C程序中,普通变量使用栈内存,为函数运行时专用,结束后会自动释放,无须考虑内存释放问题。 但堆内存是共用的,其使用是通过指针变量的new来分配,使用delete来释放,因指针使用方便…...

Flutter 核心原理 - UI 框架(UI Framework)

Flutter 既能保证很高的开发效率,又能获得很好的性能。 这两年 Flutter 技术热度持续提高,整个 Flutter 生态和社区也发生了翻天覆地的变化。目前Flutter 稳定版发布到了3.0,现在已经支持移动端、Web端和PC端,通过Flutter 开发的…...

Hive优化

工作中涉及到优化部分不多,下面的一些方案可能会缺少实际项目支撑,这里主要是为了完备一下知识体系。 参考的hive参数管理文档地址:https://cwiki.apache.org/confluence/display/Hive/ConfigurationProperties 对于Hive优化,可以…...

React 的 diff 算法

React 的 diff 算法的演进。 在 React 16 之前,React 使用的是称为 Reconciliation 的 diff 算法。Reconciliation 算法通过递归地比较新旧虚拟 DOM 树的每个节点,找出节点的差异,并将这些差异应用到实际的 DOM 上。整个过程是递归的&#x…...

综合知识篇07-软件架构设计考点(2024年软考高级系统架构设计师冲刺知识点总结系列文章)

专栏系列文章: 2024高级系统架构设计师备考资料(高频考点&真题&经验)https://blog.csdn.net/seeker1994/category_12593400.html案例分析篇00-【历年案例分析真题考点汇总】与【专栏文章案例分析高频考点目录】(2024年软考高级系统架构设计师冲刺知识点总结-案例…...

【GPT-SOVITS-05】SOVITS 模块-残差量化解析

说明:该系列文章从本人知乎账号迁入,主要原因是知乎图片附件过于模糊。 知乎专栏地址: 语音生成专栏 系列文章地址: 【GPT-SOVITS-01】源码梳理 【GPT-SOVITS-02】GPT模块解析 【GPT-SOVITS-03】SOVITS 模块-生成模型解析 【G…...

Flutter第四弹:Flutter图形渲染性能

目标: 1)Flutter图形渲染性能能够媲美原生? 2)Flutter性能优于React Native? 一、Flutter图形渲染原理 1.1 Flutter图形渲染原理 Flutter直接调用Skia。 Flutter不使用WebView,也不使用操作系统的原生控件,而是…...

[氮化镓]GaN中质子反冲离子的LET和射程特性

这篇文件是一篇关于氮化镓(GaN)中质子反冲离子的线性能量转移(LET)和射程特性的研究论文,发表在《IEEE Transactions on Nuclear Science》2021年5月的期刊上。论文的主要内容包括: 研究背景:氮…...

【项目】C++ 基于多设计模式下的同步异步日志系统

前言 一般而言,业务的服务都是周而复始的运行,当程序出现某些问题时,程序员要能够进行快速的修复,而修复的前提是要能够先定位问题。 因此为了能够更快的定位问题,我们可以在程序运行过程中记录一些日志,通…...

安卓国产百度网盘与国外云盘软件onedrive对比

我更愿意使用国外软件公司的产品,而不是使用国内百度等制作的流氓软件。使用这些国产软件让我不放心,他们占用我的设备大量空间,在我的设备上推送运行各种无用的垃圾功能。瞒着我,做一些我不知道的事情。 百度网盘安装包大小&…...

健身·健康行业Web3新尝试:MATCHI

随着区块链技术进入主流,web3 运动已经开始彻底改变互联网,改写从游戏到金融再到艺术的行业规则。现在,MATCHI的使命是颠覆健身行业。 MATCHI是全球首个基于Web3的在线舞蹈健身游戏和全球首个Web3舞蹈游戏的发起者,注册于新加坡&a…...

手游刚开服就被攻击怎么办?如何防御DDoS?

开服初期是手游最脆弱的阶段,极易成为DDoS攻击的目标。一旦遭遇攻击,可能导致服务器瘫痪、玩家流失,甚至造成巨大经济损失。本文为开发者提供一套简洁有效的应急与防御方案,帮助快速应对并构建长期防护体系。 一、遭遇攻击的紧急应…...

React Native 开发环境搭建(全平台详解)

React Native 开发环境搭建(全平台详解) 在开始使用 React Native 开发移动应用之前,正确设置开发环境是至关重要的一步。本文将为你提供一份全面的指南,涵盖 macOS 和 Windows 平台的配置步骤,如何在 Android 和 iOS…...

从零实现富文本编辑器#5-编辑器选区模型的状态结构表达

先前我们总结了浏览器选区模型的交互策略,并且实现了基本的选区操作,还调研了自绘选区的实现。那么相对的,我们还需要设计编辑器的选区表达,也可以称为模型选区。编辑器中应用变更时的操作范围,就是以模型选区为基准来…...

质量体系的重要

质量体系是为确保产品、服务或过程质量满足规定要求,由相互关联的要素构成的有机整体。其核心内容可归纳为以下五个方面: 🏛️ 一、组织架构与职责 质量体系明确组织内各部门、岗位的职责与权限,形成层级清晰的管理网络&#xf…...

TRS收益互换:跨境资本流动的金融创新工具与系统化解决方案

一、TRS收益互换的本质与业务逻辑 (一)概念解析 TRS(Total Return Swap)收益互换是一种金融衍生工具,指交易双方约定在未来一定期限内,基于特定资产或指数的表现进行现金流交换的协议。其核心特征包括&am…...

C++ Visual Studio 2017厂商给的源码没有.sln文件 易兆微芯片下载工具加开机动画下载。

1.先用Visual Studio 2017打开Yichip YC31xx loader.vcxproj,再用Visual Studio 2022打开。再保侟就有.sln文件了。 易兆微芯片下载工具加开机动画下载 ExtraDownloadFile1Info.\logo.bin|0|0|10D2000|0 MFC应用兼容CMD 在BOOL CYichipYC31xxloaderDlg::OnIni…...

大数据学习(132)-HIve数据分析

​​​​🍋🍋大数据学习🍋🍋 🔥系列专栏: 👑哲学语录: 用力所能及,改变世界。 💖如果觉得博主的文章还不错的话,请点赞👍收藏⭐️留言&#x1f4…...

使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台

🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...

A2A JS SDK 完整教程:快速入门指南

目录 什么是 A2A JS SDK?A2A JS 安装与设置A2A JS 核心概念创建你的第一个 A2A JS 代理A2A JS 服务端开发A2A JS 客户端使用A2A JS 高级特性A2A JS 最佳实践A2A JS 故障排除 什么是 A2A JS SDK? A2A JS SDK 是一个专为 JavaScript/TypeScript 开发者设计的强大库&#xff…...

云原生安全实战:API网关Kong的鉴权与限流详解

🔥「炎码工坊」技术弹药已装填! 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 一、基础概念 1. API网关(API Gateway) API网关是微服务架构中的核心组件,负责统一管理所有API的流量入口。它像一座…...