【GPT-SOVITS-03】SOVITS 模块-生成模型解析
说明:该系列文章从本人知乎账号迁入,主要原因是知乎图片附件过于模糊。
知乎专栏地址:
语音生成专栏
系列文章地址:
【GPT-SOVITS-01】源码梳理
【GPT-SOVITS-02】GPT模块解析
【GPT-SOVITS-03】SOVITS 模块-生成模型解析
【GPT-SOVITS-04】SOVITS 模块-鉴别模型解析
【GPT-SOVITS-05】SOVITS 模块-残差量化解析
【GPT-SOVITS-06】特征工程-HuBert原理
1.概述
SOVIT 模块的主要功能是生成最终的音频文件。
GPT-SOVITS的核心与SOVITS差别不大,仍然是分了两个部分:
- 基于 VAE + FLOW 的生成器,源代码为 SynthesizerTrn
- 基于多尺度分类器的鉴别器,源代码为 SynthesizerTrn
针对鉴别器相较于SOVITS5做了一些简化,主要的差异是在在生成模型处引入了残差量化层。
在训练时进入先验编码器的是经过残差量化层的 quatized 数据。
在推理时,用的是AR模块推理出的 code,然后用code直接生成 quatized 数据,再进入先验编码器。
训练所涉及特征包括:
2.训练流程
- 如概述所注,在训练时SSL特征经过残差量化层中会产生量化编码 code 和数据 quatized。
- 这个 code 也会作为 AR,即GPT模块训练的特征
- 在推理时,这个code 就由 GPT 模块生成
- 损失函数如下:
y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(y, y_hat)
with autocast(enabled=False):loss_mel = F.l1_loss(y_mel, y_hat_mel) * hps.train.c_melloss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * hps.train.c_klloss_fm = feature_loss(fmap_r, fmap_g)loss_gen, losses_gen = generator_loss(y_d_hat_g)loss_gen_all = loss_gen + loss_fm + loss_mel + kl_ssl * 1 + loss_kl
3.推理流程
推理时直接通过先验编码器,通过FLOW的逆,进入解码器后输出推理音频
4.调试代码参考
import os,sys
import json
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from torch.utils.data import DataLoaderfrom vof.vits.data_utils import (TextAudioSpeakerLoader,TextAudioSpeakerCollate,DistributedBucketSampler,
)
from vof.vits.models import SynthesizerTrn
from vof.script.utils import HParamsnow_dir = os.getcwd()
root_dir = os.path.dirname(now_dir)
prj_name = 'project01' # 项目名称
prj_dir = root_dir + '/res/' + prj_name + '/'with open(root_dir + '/res/configs/s2.json') as f:data = f.read()data = json.loads(data)# 新增其他参数
s2_dir = prj_dir + 'logs' # gpt 训练用目录
os.makedirs("%s/logs_s2" % (s2_dir), exist_ok=True)data["train"]["batch_size"] = 3
data["train"]["epochs"] = 15
data["train"]["text_low_lr_rate"] = 0.4
data["train"]["pretrained_s2G"] = root_dir + '/res/pretrained_models/s2G488k.pth'
data["train"]["pretrained_s2D"] = root_dir + '/res/pretrained_models/s2D488k.pth'
data["train"]["if_save_latest"] = True
data["train"]["if_save_every_weights"] = True
data["train"]["save_every_epoch"] = 5
data["train"]["gpu_numbers"] = 0
data["data"]["exp_dir"] = data["s2_ckpt_dir"] = s2_dir
data["save_weight_dir"] = root_dir + '/res/weight/sovits'
data["name"] = prj_name
data['exp_dir'] = s2_dirhps = HParams(**data)
print(hps)
"""
self.path2 = "%s/2-name2text-0.txt" % exp_dir
self.path4 = "%s/4-cnhubert" % exp_dir
self.path5 = "%s/5-wav32k" % exp_dir
"""
train_dataset = TextAudioSpeakerLoader(hps.data)
"""
ssl hubert 特征 [1,768,195]
spec [1025,195]
wav [1,124800]
text [14,]
"""
train_sampler = DistributedBucketSampler(train_dataset,hps.train.batch_size,[32,300,400,500,600,700,800,900,1000,1100,1200,1300,1400,1500,1600,1700,1800,1900,],num_replicas=1,rank=0,shuffle=True,
)
collate_fn = TextAudioSpeakerCollate()
train_loader = DataLoader(train_dataset,batch_size=1,shuffle=False,pin_memory=True,collate_fn=collate_fn,batch_sampler=train_sampler
)def _model_forward(ssl, y, y_lengths, text, text_lengths):net_g = SynthesizerTrn(hps.data.filter_length // 2 + 1,hps.train.segment_size // hps.data.hop_length,n_speakers=hps.data.n_speakers,**hps.model,)net_g.forward(ssl, y, y_lengths, text, text_lengths)for data in train_loader:ssl_padded = data[0]ssl_lengths = data[1]spec_padded = data[2]spec_lengths = data[3]wav_padded = data[4]wav_lengths = data[5]text_padded = data[6]text_lengths = data[7]_model_forward(ssl_padded, spec_padded, spec_lengths, text_padded, text_lengths)
相关文章:

【GPT-SOVITS-03】SOVITS 模块-生成模型解析
说明:该系列文章从本人知乎账号迁入,主要原因是知乎图片附件过于模糊。 知乎专栏地址: 语音生成专栏 系列文章地址: 【GPT-SOVITS-01】源码梳理 【GPT-SOVITS-02】GPT模块解析 【GPT-SOVITS-03】SOVITS 模块-生成模型解析 【G…...

2024HVV行动-进军蓝中研判(log4j2、fastjson、Struts2、Shiro)
1、log4j2 特征: 恶意请求中包含 JNDI 协议地址,如"ldap://"、"rmi://"等,被 log4j2 解析为 JNDI 查找。 原理: 在日志输出中,未对字符进行严格的过滤,执行了 JNDI 协议加载的远程恶…...

亮点抢先看!4月16-17日,百度Create大会开设“AI公开课”,大咖带你打造赚钱工具
3月16日,2024百度Create AI开发者大会正式开放售票,嘉宾套票定价399元。据悉,本次大会以“创造未来(Create the Future)”为主题,设有20深度论坛、超30节AI公开课、3000平AI互动体验区和AI音乐节等精彩环节…...

【笔记本清灰/实用经验】荣耀Magicbook14-2020款-R5-4500U-清灰实战
清灰有风险,动手需谨慎,本文只分享本人的清灰过程,对使用它所产生的任何后果不任何负责任 文章目录 背景信息准备阶段工具准备信息收集 正式清灰初始化清灰流程放掉身体的静电(重要)拆笔记本后盖断开电源(重…...

如何写好Stable Diffusion的prompt
Stable Diffusion是一种强大的文本到图像生成模型,其效果在很大程度上取决于输入的提示词(Prompt)。以下是一些关于如何编写有效的Stable Diffusion Prompt的秘诀: 明确描述:尽量清晰地描述你想要的图像内容。使用具体…...

计算机毕业设计 | SpringBoot+vue 移动端社区物业管理系统(附源码+论文)
1, 概述 课题背景 近几年来,随着物业相关的各种信息越来越多,比如报修维修、缴费、车位、访客等信息,对物业管理方面的需求越来越高,我们在工作中越来越多方面需要利用网页端管理系统来进行管理,我们所需…...

玩转C语言——数组初探
一、前言 通过前面的学习,我们已了解C语言的结构变量、分支结构和循环结构。今天,我们一起来认识C语言的另一知识点——数组。先赞后看,养成习惯。 二、数组概念 学习数组,我们要明白数组是什么。在我看来:数组是⼀组…...
Nginx指令配置大全
基本命令 nginx -t 检查配置文件是否有语法错误 nginx -s reload 热加载,重新加载配置文件 nginx -s stop 快速关闭 nginx -s quit 等待工作进程处理完成后关闭配置块介绍 全局块 全局块是默认配置文件从开始到events块之间的…...
富格林:安全出金关注可信操作
富格林悉知,现货黄金投资凭借着诸多优势,成为了热门的投资产品之一,也获得了投资者的追捧。在投资中想要安全盈利出金,投资者一定要沉下心来学习专业知识和技术,这样才能在以后的投资操作中避免亏损,顺畅盈…...
DELETE、TRUNCATE 和 DROP 在MySQL中的区别及使用示例
在MySQL数据库中,DELETE、TRUNCATE TABLE 和 DROP 这三个命令分别适用于不同的数据删除需求,它们在工作原理、应用场景以及特性上有所区别。接下来,我们通过实例演示来明确这三者的不同之处。 DELETE 命令 功能与示例:DELETE 语…...
程序员应该如何选择职业赛道?
程序员选择职业赛道是一个涉及个人兴趣、技能匹配、市场需求和长远发展规划的综合决策过程。以下是一些关键步骤和考虑因素: 自我评估: 技能与专长:分析自己在编程语言、算法、数据结构等方面的现有技能,并思考这些技能更适合前端…...

深入浅出Hive性能优化策略
我们将从基础的HiveQL优化讲起,涵盖数据存储格式选择、数据模型设计、查询执行计划优化等多个方面。会的直接滑到最后看代码和语法。 目录 引言 Hive架构概览 示例1:创建表并加载数据 示例2:优化查询 Hive查询优化 1. 选择适当的文件格…...
利用卷积神经网络进行人脸识别
利用卷积神经网络(Convolutional Neural Networks, CNNs)进行人脸识别是计算机视觉领域的一个热门话题。下面是一个简化的指南,涵盖了从理论基础到实际应用的各个方面,可以作为你博文的基础内容。 理论基础 卷积神经网络简介&am…...

固态硬盘有坏道怎么恢复数据 固态硬盘坏道怎么修复
固态硬盘是一种高速、低噪音、低功耗的存储设备,但是它也有一个致命的问题——坏道。坏道是指存储芯片中的某些存储单元出现了故障,导致数据无法正常读取或写入。如果你的固态硬盘出现了坏道,那么你的数据就有可能会丢失,带来了很大的困扰。那么,固态硬盘有坏道怎么恢复数…...

adobe animate 时间轴找不到编辑多个帧按钮
如题,找了半天,在时间轴上找不到编辑多个帧按钮,导致无法批量处理帧 然后搜索发现原来是有些版本被隐藏了,需要再设置一下 勾选上就好了...

5 亿欧元巨额奖励!法国国防部启动量子初创公司项目
内容来源:量子前哨(ID:Qforepost) 编辑丨王珩 编译/排版丨沛贤 深度好文:800字丨6分钟阅读 据C4ISNET报道,法国国防部采购机构宣布向五家法国量子计算研究初创公司授予合同,用于开发量子计算技…...

Linux:系统初始化,内核优化,性能优化(2)
优化ssh协议 Linux:ssh配置_ssh配置文件-CSDN博客https://blog.csdn.net/w14768855/article/details/131520745?ops_request_misc%257B%2522request%255Fid%2522%253A%2522171068202516800197044705%2522%252C%2522scm%2522%253A%252220140713.130102334.pc%255Fb…...
JS08-DOM节点
DOM节点 查找节点 父节点 通过.parentNode属性可以获得某个元素的父节点,并对其进行操作。例如,隐藏.son元素的父节点。 <div class"father"><div class"son">儿子</div></div><script>let son d…...
2024/3/14打卡棋子(14届蓝桥杯)——差分
标准差分模板 差分——前缀和的逆运算(一维二维)-CSDN博客 题目 小蓝拥有 nn 大小的棋盘,一开始棋盘上全都是白子。 小蓝进行了 m 次操作,每次操作会将棋盘上某个范围内的所有棋子的颜色取反(也就是白色棋子变为黑色࿰…...

A Survey on Multimodal Large Language Models
目录 1. Introduction2. 概述方法多模态指令调优 3.1.1 简介3.1.2 预备知识3.1.3 模态对齐3.1.4 数据3.1.5 模态桥接3.1.6 评估 3.2.多模态情境学习3.3.多模态思维链3.3.1 模态桥接3.3.2 学习范式3.3.3 链配置3.3.4 生成模式3.4.LLMs辅助视觉推理3.4.1 简介3.4.2 训练范式3.4.3…...

智能在线客服平台:数字化时代企业连接用户的 AI 中枢
随着互联网技术的飞速发展,消费者期望能够随时随地与企业进行交流。在线客服平台作为连接企业与客户的重要桥梁,不仅优化了客户体验,还提升了企业的服务效率和市场竞争力。本文将探讨在线客服平台的重要性、技术进展、实际应用,并…...
Spring Boot面试题精选汇总
🤟致敬读者 🟩感谢阅读🟦笑口常开🟪生日快乐⬛早点睡觉 📘博主相关 🟧博主信息🟨博客首页🟫专栏推荐🟥活动信息 文章目录 Spring Boot面试题精选汇总⚙️ **一、核心概…...
MySQL用户和授权
开放MySQL白名单 可以通过iptables-save命令确认对应客户端ip是否可以访问MySQL服务: test: # iptables-save | grep 3306 -A mp_srv_whitelist -s 172.16.14.102/32 -p tcp -m tcp --dport 3306 -j ACCEPT -A mp_srv_whitelist -s 172.16.4.16/32 -p tcp -m tcp -…...
Python ROS2【机器人中间件框架】 简介
销量过万TEEIS德国护膝夏天用薄款 优惠券冠生园 百花蜂蜜428g 挤压瓶纯蜂蜜巨奇严选 鞋子除臭剂360ml 多芬身体磨砂膏280g健70%-75%酒精消毒棉片湿巾1418cm 80片/袋3袋大包清洁食品用消毒 优惠券AIMORNY52朵红玫瑰永生香皂花同城配送非鲜花七夕情人节生日礼物送女友 热卖妙洁棉…...

Yolov8 目标检测蒸馏学习记录
yolov8系列模型蒸馏基本流程,代码下载:这里本人提交了一个demo:djdll/Yolov8_Distillation: Yolov8轻量化_蒸馏代码实现 在轻量化模型设计中,**知识蒸馏(Knowledge Distillation)**被广泛应用,作为提升模型…...

GitFlow 工作模式(详解)
今天再学项目的过程中遇到使用gitflow模式管理代码,因此进行学习并且发布关于gitflow的一些思考 Git与GitFlow模式 我们在写代码的时候通常会进行网上保存,无论是github还是gittee,都是一种基于git去保存代码的形式,这样保存代码…...

2025年渗透测试面试题总结-腾讯[实习]科恩实验室-安全工程师(题目+回答)
安全领域各种资源,学习文档,以及工具分享、前沿信息分享、POC、EXP分享。不定期分享各种好玩的项目及好用的工具,欢迎关注。 目录 腾讯[实习]科恩实验室-安全工程师 一、网络与协议 1. TCP三次握手 2. SYN扫描原理 3. HTTPS证书机制 二…...

【C++进阶篇】智能指针
C内存管理终极指南:智能指针从入门到源码剖析 一. 智能指针1.1 auto_ptr1.2 unique_ptr1.3 shared_ptr1.4 make_shared 二. 原理三. shared_ptr循环引用问题三. 线程安全问题四. 内存泄漏4.1 什么是内存泄漏4.2 危害4.3 避免内存泄漏 五. 最后 一. 智能指针 智能指…...

给网站添加live2d看板娘
给网站添加live2d看板娘 参考文献: stevenjoezhang/live2d-widget: 把萌萌哒的看板娘抱回家 (ノ≧∇≦)ノ | Live2D widget for web platformEikanya/Live2d-model: Live2d model collectionzenghongtu/live2d-model-assets 前言 网站环境如下,文章也主…...
redis和redission的区别
Redis 和 Redisson 是两个密切相关但又本质不同的技术,它们扮演着完全不同的角色: Redis: 内存数据库/数据结构存储 本质: 它是一个开源的、高性能的、基于内存的 键值存储数据库。它也可以将数据持久化到磁盘。 核心功能: 提供丰…...