当前位置: 首页 > news >正文

代码随想录阅读笔记-哈希表【四数之和】

题目

给定一个包含 n 个整数的数组 nums 和一个目标值 target,判断 nums 中是否存在四个元素 a,b,c 和 d ,使得 a + b + c + d 的值与 target 相等?找出所有满足条件且不重复的四元组。

注意:答案中不可以包含重复的四元组。

示例:

给定数组 nums = [1, 0, -1, 0, -2, 2],和 target = 0。

满足要求的四元组集合为: [ [-1, 0, 0, 1], [-2, -1, 1, 2], [-2, 0, 0, 2] ]

思路 

四数之和,和代码随想录阅读笔记-哈希表【三数之和】-CSDN博客是一个思路,都是使用双指针法, 基本解法就是在代码随想录阅读笔记-哈希表【三数之和】-CSDN博客的基础上再套一层for循环。但是有一些细节需要注意,例如: 不要判断nums[k] > target 就返回了,三数之和 可以通过 nums[i] > 0 就返回了,因为 0 已经是确定的数了,四数之和这道题目 target是任意值。比如:数组是[-4, -3, -2, -1]target-10,不能因为-4 > -10而跳过。但是我们依旧可以去做剪枝,逻辑变成nums[i] > target && (nums[i] >=0 || target >= 0)就可以了。

代码随想录阅读笔记-哈希表【三数之和】-CSDN博客的双指针解法是一层for循环num[i]为确定值,然后循环内有left和right下标作为双指针,找到nums[i] + nums[left] + nums[right] == 0。

四数之和的双指针解法是两层for循环nums[k] + nums[i]为确定值,依然是循环内有left和right下标作为双指针,找出nums[k] + nums[i] + nums[left] + nums[right] == target的情况,三数之和的时间复杂度是O(n^2),四数之和的时间复杂度是O(n^3) 。那么一样的道理,五数之和、六数之和等等都采用这种解法。

对于代码随想录阅读笔记-哈希表【三数之和】-CSDN博客双指针法就是将原本暴力O(n^3)的解法,降为O(n^2)的解法,四数之和的双指针解法就是将原本暴力O(n^4)的解法,降为O(n^3)的解法。

之前博客的经典题目:代码随想录阅读笔记-哈希表【四数相加II】-CSDN博客,相对于本题简单很多,因为本题是要求在一个集合中找出四个数相加等于target,同时四元组不能重复。而​​​​​​​代码随想录阅读笔记-哈希表【四数相加II】-CSDN博客是四个独立的数组,只要找到A[i] + B[j] + C[k] + D[l] = 0就可以,不用考虑有重复的四个元素相加等于0的情况,所以相对于本题还是简单了不少。

我们来回顾一下,几道题目使用了双指针法。

双指针法将时间复杂度:O(n^2)的解法优化为 O(n)的解法。也就是降一个数量级,除了本题还有之前写过的题目如下:

  • 代码随想录阅读笔记-数组【移除元素】-CSDN博客
  • 代码随想录阅读笔记-哈希表【三数之和】-CSDN博客

链表相关双指针题目:

  • 代码随想录阅读笔记-链表【反转链表】-CSDN博客
  • 代码随想录阅读笔记-链表【删除链表倒数第n节点】-CSDN博客
  • 代码随想录阅读笔记-链表【链表相交】-CSDN博客
  • 代码随想录阅读笔记-链表【环形链表II】-CSDN博客

双指针法在字符串题目中还有很多应用,后面还会介绍到。

C++代码:

class Solution {
public:vector<vector<int>> fourSum(vector<int>& nums, int target) {vector<vector<int>> result;sort(nums.begin(), nums.end());for (int k = 0; k < nums.size(); k++) {// 剪枝处理if (nums[k] > target && nums[k] >= 0) {break; // 这里使用break,统一通过最后的return返回}// 对nums[k]去重if (k > 0 && nums[k] == nums[k - 1]) {continue;}for (int i = k + 1; i < nums.size(); i++) {// 2级剪枝处理if (nums[k] + nums[i] > target && nums[k] + nums[i] >= 0) {break;}// 对nums[i]去重if (i > k + 1 && nums[i] == nums[i - 1]) {continue;}int left = i + 1;int right = nums.size() - 1;while (right > left) {// nums[k] + nums[i] + nums[left] + nums[right] > target 会溢出if ((long) nums[k] + nums[i] + nums[left] + nums[right] > target) {right--;// nums[k] + nums[i] + nums[left] + nums[right] < target 会溢出} else if ((long) nums[k] + nums[i] + nums[left] + nums[right]  < target) {left++;} else {result.push_back(vector<int>{nums[k], nums[i], nums[left], nums[right]});// 对nums[left]和nums[right]去重while (right > left && nums[right] == nums[right - 1]) right--;while (right > left && nums[left] == nums[left + 1]) left++;// 找到答案时,双指针同时收缩right--;left++;}}}}return result;}
};
  • 时间复杂度: O(n^3)
  • 空间复杂度: O(1)

优化二级剪枝的部分:

if (nums[k] + nums[i] > target && nums[k] + nums[i] >= 0) {break;
}

可以优化为:

if (nums[k] + nums[i] > target && nums[i] >= 0) {break;
}

因为只要 nums[k] + nums[i] > target,那么想要符合题意的唯一条件就是此时nums[k] 和 nums[i]都为负数,所以需要nums[i]后面还有负数,才能使和变小进而去接近target,那么 nums[i] 后面的数都是正数的话,就一定 不符合条件了。

相关文章:

代码随想录阅读笔记-哈希表【四数之和】

题目 给定一个包含 n 个整数的数组 nums 和一个目标值 target&#xff0c;判断 nums 中是否存在四个元素 a&#xff0c;b&#xff0c;c 和 d &#xff0c;使得 a b c d 的值与 target 相等&#xff1f;找出所有满足条件且不重复的四元组。 注意&#xff1a;答案中不可以包…...

JVM学习——双亲委派机制

简而言之就是为了防止与Java固有全类名重复&#xff0c;而导致系统崩坏所设立的机制。 当类加载器接收到加载类的任务时&#xff0c;首先会向上请求&#xff0c;一直请求到引导类加载器&#xff0c;如果引导类加载器无法加载&#xff0c;就会逐层返回让类加载器自己执行&#…...

【Paper Reading】6.RLHF-V 提出用RLHF的1.4k的数据微调显著降低MLLM的虚幻问题

分类 内容 论文题目 RLHF-V: Towards Trustworthy MLLMs via Behavior Alignment from Fine-grained Correctional Human Feedback 作者 作者团队&#xff1a;由来自清华大学和新加坡国立大学的研究者组成&#xff0c;包括Tianyu Yu, Yuan Yao, Haoye Zhang, Taiwen He, Y…...

Aloudata 倾力打造,《Data Fabric 白皮书 2.0》正式发布

数字经济时代&#xff0c;越来越多企业开始寻求全新的数据管理范式&#xff0c;以更有效地管理、利用不断增长的数据资产。在此背景下&#xff0c;Data Fabric 的概念应运而生&#xff0c;被视为面向未来的数据管理解决方案。 距离第一版白皮书问世已经过去一年多时间&#xff…...

docker内部无法使用ping等网络工具解决方案

通常docker内部没有网络&#xff0c;所以我们先离线安装需要的依赖包&#xff0c;然后再使用sh脚本容器内部访问宿主机同网络端其他服务器ip,实现监测远程ip telnet包依赖于netbase包&#xff0c;但是netbase包没有安装。你需要先安装netbase包&#xff0c;然后再尝试安装teln…...

后端工程师快速使用vue和Element

文章目录 Vue1 Vue概述2 快速入门3 Vue指令3.1 v-bind和v-model3.2 v-on3.3 v-if和v-show3.4 v-for3.5 案例 4 生命周期 Element快速使用1 Element介绍2 快速入门3 当前页面中嵌套另一个页面案例代码案例截图 Vue 1 Vue概述 通过我们学习的htmlcssjs已经能够开发美观的页面了…...

自学rabbitmq入门到精通

交换机的fault &#xff08;发布与订阅模式&#xff09; 因为消息是由生产者发送给excahnge&#xff0c;exchange发送给队列&#xff0c; 然后由队列发送给消费者的。 展示使用图形化界面使用fanout模式。 创建交换机 然后创建三个队列&#xff0c;绑定对应的交换机&#xff…...

由浅到深认识C语言(13):共用体

该文章Github地址&#xff1a;https://github.com/AntonyCheng/c-notes 在此介绍一下作者开源的SpringBoot项目初始化模板&#xff08;Github仓库地址&#xff1a;https://github.com/AntonyCheng/spring-boot-init-template & CSDN文章地址&#xff1a;https://blog.csdn…...

python爬虫(9)之requests模块

1、获取动态加载的数据 1、在开发者工具中查看动态数据 找到csdn的门户的开发者工具后到这一页面。 2、加载代码 import requests headers {User-Agent:Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/122.0.0.0 Safari/537.36…...

phpstudy自定义安装mysql8.3并启动

phpstudy自定义安装mysql8.3并启动 先去官网:https://dev.mysql.com/downloads/下载压缩包文件 然后按下面的图片一步一步操作 选择版本&#xff0c;选择第一个压缩包文件&#xff0c;下载 下载完成后&#xff0c;解压到phpstudy环境目录下&#xff0c;如下图 然后进入mysq…...

Netty 学习资料

Netty 学习资料 搜集了一下Java网络库Netty的学习资料&#xff0c;整理如下&#xff0c;有空花时间研究一下。 1、Netty学习手册 《尚硅谷 Netty 核心技术及源码剖析》课程学习手册 本课程不适合零基础的学员&#xff0c;需要掌握常用的设计模式和数据结构 掌握 Java 的面向对…...

【概率论中的两种重要公式:全概率和贝叶斯】

贝叶斯公式&#xff08;Bayes’ Theorem&#xff09;是概率论中的一条重要定理&#xff0c;用于计算条件概率。它描述了在已知某一事件发生的条件下&#xff0c;另一事件发生的概率。贝叶斯公式如下所示&#xff1a; P ( A ∣ B ) P ( B ∣ A ) ⋅ P ( A ) P ( B ) P(A|B) \…...

python中的闭包

一、闭包 1、作用域 在Python代码中&#xff0c;作用域分为两种情况&#xff1a;全局作用域 与 局部作用域 2、变量的作用域 在全局定义的变量 > 全局变量 在局部定义的变量 > 局部变量 3、全局变量与局部变量的访问范围 ① 在全局作用域中可以访问全局变量&#…...

成功解决RuntimeError: OpenSSL 3.0‘s legacy provider failed to load

报错 RuntimeError: OpenSSL 3.0s legacy provider failed to load. This is a fatal error by default, but cryptography supports running without legacy algorithms by setting the environment variable CRYPTOGRAPHY_OPENSSL_NO_LEGACY. If you did not expect this er…...

【 React 】React 组件之间如何通信?

相关文章&#xff1a; React Context的使用方法 react Provider Consumer 使用方法 1. 是什么 我们将组件间通信可以拆分为两个词&#xff1a; 组件通信 组件是vue中最强大的功能之一&#xff0c;同样组件化是React的核心思想 相比vue&#xff0c;React的组件更加灵活和多样…...

汇总全网免费API,持续更新(新闻api、每日一言api、音乐。。。)

Public&FreeAPI 网址&#xff1a;apis.whyta.cn &#xff08;推荐&#xff09; UomgAPI 网址&#xff1a;https://api.uomg.com 教书先生 网址&#xff1a;https://api.oioweb.cn/ 山海API https://api.shserve.cn/ 云析API铺 https://api.a20safe.com/ 韩小韩…...

Android SystemServer进程解析

SystemServer进程在android系统中占了举足轻重的地位&#xff0c;系统的所有服务和SystemUI都是由它启动。 一、SystemServer进程主函数流程 1、主函数三部曲 //frameworks/base/services/java/com/android/server/SystemServer.java /** * The main entry point from zy…...

Github主页设置贪吃蛇详细教程

先看最终实现结果&#xff1a; 有条贪吃蛇放在主页还是蛮酷的哈哈哈。接下来我来讲一讲怎么在Github主页添加一条贪吃蛇。 首先要修改自己的Github的主页&#xff0c;我们得有一个特殊的仓库——这个仓库必须与你的Github用户名保持一致&#xff0c;并且需要公开&#xff0c…...

二、实现fastdfs文件上传与延迟删除功能的Spring Boot项目

如何在Spring Boot项目中集成FastDFS实现文件上传功能&#xff0c;并添加支持延迟删除功能的实现。 一、Spring Boot 中集成 fastdfs 使用 1、文件上传功能实现 首先&#xff0c;让我们看一下如何实现文件上传功能的接口方法&#xff1a; RestController public class File…...

Android FrameWork 学习路线

目录 前言 学习路线&#xff1a; 1.基础知识 2、AOSP 源码学习 3. AOSP 源码编译系统 4. Hal与硬件服务 5.基础组件 6. Binder 7. 系统启动过程分析 8. 应用层框架​编辑 9. 显示系统 10. Android 输入系统 11. 系统应用 前言 Android Framework 涉及的行业相当广…...

利用最小二乘法找圆心和半径

#include <iostream> #include <vector> #include <cmath> #include <Eigen/Dense> // 需安装Eigen库用于矩阵运算 // 定义点结构 struct Point { double x, y; Point(double x_, double y_) : x(x_), y(y_) {} }; // 最小二乘法求圆心和半径 …...

[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解

突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 ​安全措施依赖问题​ GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...

【Python】 -- 趣味代码 - 小恐龙游戏

文章目录 文章目录 00 小恐龙游戏程序设计框架代码结构和功能游戏流程总结01 小恐龙游戏程序设计02 百度网盘地址00 小恐龙游戏程序设计框架 这段代码是一个基于 Pygame 的简易跑酷游戏的完整实现,玩家控制一个角色(龙)躲避障碍物(仙人掌和乌鸦)。以下是代码的详细介绍:…...

多模态2025:技术路线“神仙打架”,视频生成冲上云霄

文&#xff5c;魏琳华 编&#xff5c;王一粟 一场大会&#xff0c;聚集了中国多模态大模型的“半壁江山”。 智源大会2025为期两天的论坛中&#xff0c;汇集了学界、创业公司和大厂等三方的热门选手&#xff0c;关于多模态的集中讨论达到了前所未有的热度。其中&#xff0c;…...

Linux 文件类型,目录与路径,文件与目录管理

文件类型 后面的字符表示文件类型标志 普通文件&#xff1a;-&#xff08;纯文本文件&#xff0c;二进制文件&#xff0c;数据格式文件&#xff09; 如文本文件、图片、程序文件等。 目录文件&#xff1a;d&#xff08;directory&#xff09; 用来存放其他文件或子目录。 设备…...

python打卡day49

知识点回顾&#xff1a; 通道注意力模块复习空间注意力模块CBAM的定义 作业&#xff1a;尝试对今天的模型检查参数数目&#xff0c;并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...

工业安全零事故的智能守护者:一体化AI智能安防平台

前言&#xff1a; 通过AI视觉技术&#xff0c;为船厂提供全面的安全监控解决方案&#xff0c;涵盖交通违规检测、起重机轨道安全、非法入侵检测、盗窃防范、安全规范执行监控等多个方面&#xff0c;能够实现对应负责人反馈机制&#xff0c;并最终实现数据的统计报表。提升船厂…...

如何为服务器生成TLS证书

TLS&#xff08;Transport Layer Security&#xff09;证书是确保网络通信安全的重要手段&#xff0c;它通过加密技术保护传输的数据不被窃听和篡改。在服务器上配置TLS证书&#xff0c;可以使用户通过HTTPS协议安全地访问您的网站。本文将详细介绍如何在服务器上生成一个TLS证…...

鱼香ros docker配置镜像报错:https://registry-1.docker.io/v2/

使用鱼香ros一件安装docker时的https://registry-1.docker.io/v2/问题 一键安装指令 wget http://fishros.com/install -O fishros && . fishros出现问题&#xff1a;docker pull 失败 网络不同&#xff0c;需要使用镜像源 按照如下步骤操作 sudo vi /etc/docker/dae…...

【python异步多线程】异步多线程爬虫代码示例

claude生成的python多线程、异步代码示例&#xff0c;模拟20个网页的爬取&#xff0c;每个网页假设要0.5-2秒完成。 代码 Python多线程爬虫教程 核心概念 多线程&#xff1a;允许程序同时执行多个任务&#xff0c;提高IO密集型任务&#xff08;如网络请求&#xff09;的效率…...