Spark杂谈
文章目录
- 什么是Spark
- 对比Hadoop
- Spark应用场景
- Spark数据处理流程
- 什么是RDD
- Spark架构相关进程
- 入门案例:统计单词数量
- Spark开启historyServer
什么是Spark
- Spark是一个用于大规模数据处理的统一计算引擎
- Spark一个重要的特性就是基于内存计算,从而它的速度可以达到MapReduce的几十倍甚至百倍
对比Hadoop
- Spark是一个综合性质的计算引擎,Hadoop既包含Mapreduce(计算)还包含HDFS(存储)和YARN(资源管理),两个框架定位不同,从综合能力来说Hadoop更胜一筹
- 计算模型:Spark任务可以包含多个计算操作,轻松实现复杂迭代计算,Hadoop中的mapreduce任务只包含Map和Reduce阶段,不够灵活
- 处理速度:Spark任务的数据是存放在内存里面的,而Hadoop中的MapReduce任务是基于磁盘的
在实际工作中Hadoop会作为一个提供分布式存储和分布式资源管理的一个角色存在,Spark会依赖于Hadoop去做计算。

Spark应用场景
- 低延时的海量数据计算需求
- 低延时的SQL交互查询需求
- 准实时计算需求
Spark数据处理流程

什么是RDD
- 通常通过Hadoop上的文件,即HDFS文件进行创建,也可以通过程序中的集合来创建
- 是Spark提供的核心抽象,全称为Resillient Distributed Dataset,即弹性分布式数据集
- 弹性:RDD数据在默认的情况下存放内存中,但是在内存资源不足时,Spark也会自动将RDD数据写入磁盘
- RDD在抽象上来说是一种元素数据的集合,它是被分区的,每个分区分布在集群中的不同节点上,从而RDD中的数据可以被并行操作
- 容错性:最重要的特性就是提供了容错性,可以自动从节点失败中恢复过来。比如某个节点的数据由于故障导致分区的数据丢了,RDD会自动通过数据来源重新计算数据
Spark架构相关进程
- Driver:我们编写的Spark程序由Driver进程负责执行
- Master:集群的主节点中启动的进程
- Worker:集群的从节点中启动的进程
- Executor:由Worker负责启动的进程,执行数据处理和数据计算
- Task:由Executor负责启动的线程,是真正干活的

入门案例:统计单词数量
# scala 代码
object WordCountScala {def main(args: Array[String]): Unit = {val conf = new SparkConf();conf.setAppName("wordCount").setMaster("local")val context = new SparkContext(conf);val linesRDD = context.textFile("D:\\hadoop\\logs\\hello.txt");var wordsRDD = linesRDD.flatMap(line => line.split(" "))val pairRDD = wordsRDD.map(word => (word, 1))val wordCountRDD = pairRDD.reduceByKey(_ + _)wordCountRDD.foreach(wordCount => println(wordCount._1 + "---" + wordCount._2))context.stop()}
}
public class WordCountJava {public static void main(String[] args) {SparkConf sparkConf = new SparkConf();sparkConf.setAppName("worldCount").setMaster("local");JavaSparkContext javaSparkContext = new JavaSparkContext();JavaRDD<String> stringJavaRDD = javaSparkContext.textFile("D:\\hadoop\\logs\\hello.txt");// 数据切割,把一行数据拆分为一个个的单词// 第一个是输入数据类型,第二个是输出数据类型JavaRDD<String> wordRDD = stringJavaRDD.flatMap(new FlatMapFunction<String, String>() {@Overridepublic Iterator<String> call(String line) throws Exception {return Arrays.asList(line.split(" ")).iterator();}});// 迭代word,装换成(word,1)这种形式// 第一个是输入参数,第二个是输出第一个参数类型,第三个是输出第二个参数类型JavaPairRDD<String, Integer> pairRDD = wordRDD.mapToPair(new PairFunction<String, String, Integer>() {@Overridepublic Tuple2<String, Integer> call(String word) throws Exception {return new Tuple2<>(word, 1);}});// 根据key进行分组聚合JavaPairRDD<String, Integer> wordCountRDD = pairRDD.reduceByKey(new Function2<Integer, Integer, Integer>() {@Overridepublic Integer call(Integer v1, Integer v2) throws Exception {return v1 + v2;}});// 输出控制台wordCountRDD.foreach(new VoidFunction<Tuple2<String, Integer>>() {@Overridepublic void call(Tuple2<String, Integer> tuple2) throws Exception {System.out.println(tuple2._1 + "=:=" + tuple2._2);}});javaSparkContext.stop();}}
Spark开启historyServer
[root@hadoop04 conf]# vim spark-env.sh
export SPARK_HISTORY_OPTS="-Dspark.history.ui.port=18080 -Dspark.history.fs.logDirectory=hdfs://hadoop01:9000/tmp/logs/root/logs"[root@hadoop04 conf]# vim spark-defaults.conf
spark.eventLof.enable=true
spark.eventLog.compress=true
spark.eventLog.dir=hdfs://hadoop01:9000/tmp/logs/root/logs
spark.history.fs.logDirectory=hdfs://hadoop01:9000/tmp/logs/root/logs# 启动
[root@hadoop04 conf]# sbin/start-history-server.sh # 访问
http://hadoop04:18080/

相关文章:
Spark杂谈
文章目录 什么是Spark对比HadoopSpark应用场景Spark数据处理流程什么是RDDSpark架构相关进程入门案例:统计单词数量Spark开启historyServer 什么是Spark Spark是一个用于大规模数据处理的统一计算引擎Spark一个重要的特性就是基于内存计算,从而它的速度…...
【PyTorch】进阶学习:一文详细介绍 torch.save() 的应用场景、实战代码示例
【PyTorch】进阶学习:一文详细介绍 torch.save() 的应用场景、实战代码示例 🌈 个人主页:高斯小哥 🔥 高质量专栏:Matplotlib之旅:零基础精通数据可视化、Python基础【高质量合集】、PyTorch零基础入门教程…...
私域流量运营的关键要素和基本步骤
解锁增长的四大关键: 关键要素一:精准营销 精准营销是私域流量运营的核心所在。通过精细化运营和个性化服务,企业可以将普通用户转化为忠实粉丝,提高用户的粘性和转化率。采用数据驱动的精准营销策略,深度挖掘用户需求…...
k8s部署hadoop
(作者:陈玓玏) 配置和模板参考helm仓库:https://artifacthub.io/packages/helm/apache-hadoop-helm/hadoop 先通过以下命令生成yaml文件: helm template hadoop pfisterer-hadoop/hadoop > hadoop.yaml用kube…...
deepspeed分布式训练在pytorch 扩展(PyTorch extensions)卡住
错误展示: Using /root/.cache/torch_extensions/py310_cu121 as PyTorch extensions root... Using /root/.cache/torch_extensions/py310_cu121 as PyTorch extensions root... 错误表现: 出现在多卡训练过程的pytorch 扩展,deepspee…...
Rust 的 HashMap
在 Rust 中,HashMap 是一个从键(key)映射到值(value)的数据结构。它允许你以 O(1) 的平均时间复杂度存储、检索和删除键值对。HashMap 实现了 std::collections::HashMap 结构体,通常通过 use std::collect…...
exporter方式监控达梦数据库
蓝鲸监控 随着国产化和信创的深入,开始普遍使用国产化数据库–如达梦数据库,蓝鲸平台默认没有对其进行监控,但是平台了提供监控告警的能力。比如脚本采集,脚本的是一种灵活和快速的监控采集方式,不同层的监控对象都可…...
供应链安全之被忽略的软件质量管理平台安全
背景 随着我国信息化进程加速,网络安全问题更加凸显。关键信息基础设施和企业单位在满足等保合规的基础上,如何提升网络安全防御能力,降低安全事件发生概率?默安玄甲实验室针对SonarQube供应链安全事件进行分析,强调供…...
python入门(二)
python的安装很方便,我们这里就不再进行讲解,大家可以自己去搜索视频。下面分享一下Python的入门知识点。 执行命令的方式 在安装好python后,有两种方式可以执行命令: 命令行程序文件,后缀名为.py 对于命令行&…...
Mysql,MongoDB,Redis的横纵向对比
一,什么是Mysql Mysql是一款安全,可以跨平台,高效率的数据库系统,运行速度高,安全性能高,支持面向对象,安全性高,并且成本比较低,支持各种开发语言,数据库的存储容量大,有许多的内置函数。 二,什么是MongoDB MongoDB是基于分布式文件存储的数据库,是一个介于关…...
css3 实现html样式蛇形布局
文章目录 1. 实现效果2. 实现代码 1. 实现效果 2. 实现代码 <template><div class"body"><div class"title">CSS3实现蛇形布局</div><div class"list"><div class"item" v-for"(item, index) …...
基于消失点的相机自标定
基于消失点的相机自标定 附赠最强自动驾驶学习资料:直达链接 相机是通过透视投影变换来将3D场景转换为2D图像。在射影变换中,平行线相交于一点称之为消失点。本文详细介绍了两种利用消失点特性的标定方法。目的是为根据实际应用和初始条件选择合适的标…...
Python:filter过滤器
filter() 是 Python 中的一个内置函数,用于过滤序列,过滤掉不符合条件的元素,返回由符合条件元素组成的新列表。该函数接收两个参数,一个是函数,一个是序列,序列的每个元素作为参数传递给函数进行判定&…...
Python函数学习
Python函数学习 1.函数定义 在函数定义阶段只检查函数的语法问题 2.实参形参 总结: (1)位置参数就是经常用的按照位置顺序给出实参的值; (2)关键字实参形式:key123;放在…...
IDEA中的Project工程、Module模块的概念及创建导入
1、IDEA中的层级关系: project(工程) - module(模块) - package(包) - class(类)/接口具体的: 一个project中可以创建多个module一个module中可以创建多个package一个package中可以创建多个class/接口2、Project和Module的概念: 在 IntelliJ …...
如何快速下载并剪辑B站视频
1、B站手机端右上角缓存视频; 2、在手机文件管理助手中找到android/data/80找到两个文件,video.m4s和audio.m4s,将它们发送到电脑,系统会默认保存在你的个人文件夹里,C:\users\用户名 3、下载ffmepg https://blog.cs…...
智慧矿山新趋势:大数据解决方案一览
1. 背景 随着信息技术的快速发展和矿山管理需求的日益迫切,智慧矿山作为一种创新的矿山管理方式应运而生。智慧矿山借助先进的信息技术,实现对矿山生产、管理、安全等各方面的智能化、高效化、协同化,是矿山行业转型升级的必然趋势。 欢迎关…...
Ubuntu使用Docker部署Nginx容器并结合内网穿透实现公网访问本地服务
目录 ⛳️推荐 1. 安装Docker 2. 使用Docker拉取Nginx镜像 3. 创建并启动Nginx容器 4. 本地连接测试 5. 公网远程访问本地Nginx 5.1 内网穿透工具安装 5.2 创建远程连接公网地址 5.3 使用固定公网地址远程访问 ⛳️推荐 前些天发现了一个巨牛的人工智能学习网站&#…...
面试笔记——Redis(使用场景、面临问题、缓存穿透)
Redis的使用场景 Redis(Remote Dictionary Server)是一个内存数据结构存储系统,它以快速、高效的特性闻名,并且它支持多种数据结构,包括字符串、哈希表、列表、集合、有序集合等。它主要用于以下场景: 缓…...
电机学(笔记一)
磁极对数p: 直流电机的磁极对数是指电机定子的磁极对数,也等于电机电刷的对数。它与电机的转速和扭矩有直接关系。一般来说,极对数越多,电机转速越低,扭矩越大,适用于低速、高扭矩的场合;相反&…...
变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析
一、变量声明设计:let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性,这种设计体现了语言的核心哲学。以下是深度解析: 1.1 设计理念剖析 安全优先原则:默认不可变强制开发者明确声明意图 let x 5; …...
【Oracle APEX开发小技巧12】
有如下需求: 有一个问题反馈页面,要实现在apex页面展示能直观看到反馈时间超过7天未处理的数据,方便管理员及时处理反馈。 我的方法:直接将逻辑写在SQL中,这样可以直接在页面展示 完整代码: SELECTSF.FE…...
c++ 面试题(1)-----深度优先搜索(DFS)实现
操作系统:ubuntu22.04 IDE:Visual Studio Code 编程语言:C11 题目描述 地上有一个 m 行 n 列的方格,从坐标 [0,0] 起始。一个机器人可以从某一格移动到上下左右四个格子,但不能进入行坐标和列坐标的数位之和大于 k 的格子。 例…...
将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?
Otsu 是一种自动阈值化方法,用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理,能够自动确定一个阈值,将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...
拉力测试cuda pytorch 把 4070显卡拉满
import torch import timedef stress_test_gpu(matrix_size16384, duration300):"""对GPU进行压力测试,通过持续的矩阵乘法来最大化GPU利用率参数:matrix_size: 矩阵维度大小,增大可提高计算复杂度duration: 测试持续时间(秒&…...
使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台
🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...
C# 求圆面积的程序(Program to find area of a circle)
给定半径r,求圆的面积。圆的面积应精确到小数点后5位。 例子: 输入:r 5 输出:78.53982 解释:由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982,因为我们只保留小数点后 5 位数字。 输…...
以光量子为例,详解量子获取方式
光量子技术获取量子比特可在室温下进行。该方式有望通过与名为硅光子学(silicon photonics)的光波导(optical waveguide)芯片制造技术和光纤等光通信技术相结合来实现量子计算机。量子力学中,光既是波又是粒子。光子本…...
20个超级好用的 CSS 动画库
分享 20 个最佳 CSS 动画库。 它们中的大多数将生成纯 CSS 代码,而不需要任何外部库。 1.Animate.css 一个开箱即用型的跨浏览器动画库,可供你在项目中使用。 2.Magic Animations CSS3 一组简单的动画,可以包含在你的网页或应用项目中。 3.An…...
【电力电子】基于STM32F103C8T6单片机双极性SPWM逆变(硬件篇)
本项目是基于 STM32F103C8T6 微控制器的 SPWM(正弦脉宽调制)电源模块,能够生成可调频率和幅值的正弦波交流电源输出。该项目适用于逆变器、UPS电源、变频器等应用场景。 供电电源 输入电压采集 上图为本设计的电源电路,图中 D1 为二极管, 其目的是防止正负极电源反接, …...
