聚类分析 | Matlab实现基于PCA+DBO+K-means的数据聚类可视化
聚类分析 | Matlab实现基于PCA+DBO+K-means的数据聚类可视化
目录
- 聚类分析 | Matlab实现基于PCA+DBO+K-means的数据聚类可视化
- 效果一览
- 基本介绍
- 程序设计
- 参考资料
效果一览

基本介绍
PCA(主成分分析)、DBO(蜣螂优化算法)和K-means聚类是三种不同的数据处理和优化的方法,它们可以结合起来使用以改进聚类效果。下面是对这三种方法的简要介绍以及如何将它们结合使用的说明。
PCA(主成分分析)
PCA 是一种常用的数据降维方法。它通过对原始特征空间进行线性变换,找到一组新的正交特征(即主成分),这些主成分能够最大程度地保留原始数据中的方差。PCA 可以帮助去除数据中的噪声和冗余,提高后续聚类等任务的效果。
K-means聚类
K-means 是一种经典的聚类算法,它通过将数据划分为 K 个簇来工作。每个簇由其质心(即簇中所有点的均值)表示。K-means 算法通过迭代优化每个点的簇分配和簇质心的位置来工作,直到达到收敛或满足其他停止条件。
DBO(蜣螂优化算法)
DBO 是一种基于蜣螂觅食行为的优化算法。它模拟了蜣螂在寻找食物过程中的行为,通过不断滚动粪球(即优化问题的解)来寻找最优解。DBO 具有全局搜索能力强、收敛速度快等优点,适用于解决各种优化问题。
结合使用
将 PCA、DBO 和 K-means 结合使用可以进一步提高聚类的效果和效率。具体的步骤可能如下:
数据预处理与PCA降维:首先,对数据进行预处理,如去除异常值、填充缺失值等。然后,使用 PCA 对数据进行降维,以消除噪声和冗余,并提取主要特征。
K-means聚类初始化:使用降维后的数据进行 K-means 聚类。在这个阶段,可以使用 DBO 来优化 K-means 的初始化过程。具体来说,可以将 K-means 的初始质心作为优化问题的解,通过 DBO 算法来寻找更好的初始质心位置。
DBO优化K-means迭代:在 K-means 的迭代过程中,可以使用 DBO 来优化簇的分配和质心的位置。具体来说,可以将每个点的簇分配和簇质心的位置作为优化问题的解,通过 DBO 算法来寻找更好的解。
聚类结果评估与优化:最后,对聚类结果进行评估,如使用轮廓系数、Calinski-Harabasz 指数等指标。如果聚类效果不理想,可以调整 PCA 的参数、DBO 的参数或 K-means 的参数,并重复上述步骤进行优化。
通过这种方式,PCA 可以帮助减少数据的维度和噪声,DBO 可以优化 K-means 的初始化和迭代过程,从而提高聚类的效果和效率。然而,需要注意的是,这种结合使用的方法可能会增加计算的复杂性和时间成本,因此在实际应用中需要根据具体情况进行权衡和调整。
程序设计
- 完整源码和数据获取方式私信博主回复Matlab实现基于PCA+DBO+K-means的数据聚类可视化。
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行版权声明:本文为CSDN博主「机器学习之心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/kjm13182345320/article/details/119920826
————————————————
版权声明:本文为CSDN博主「机器学习之心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/kjm13182345320/article/details/119920826
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718
相关文章:
聚类分析 | Matlab实现基于PCA+DBO+K-means的数据聚类可视化
聚类分析 | Matlab实现基于PCADBOK-means的数据聚类可视化 目录 聚类分析 | Matlab实现基于PCADBOK-means的数据聚类可视化效果一览基本介绍程序设计参考资料 效果一览 基本介绍 PCA(主成分分析)、DBO(蜣螂优化算法)和K-means聚类…...
使用 git 先提交后拉取的时候远程分支不允许问题
问题场景 修改本地代码使用 git 先提交后拉取的时候远程分支不允许的问题 修改本地代码时,远程分支存在其他新提交先执行了 git commit -m xxx update然后再执行 git pull 拉取远程分支代码,出现如下提示 hint: You have divergent branches and need…...
Unity 创建快捷方式开机自动启动
Unity 创建快捷方式自动启动 🌭食用方法 🌭食用方法 先导入插件包👈,再 把导入的ZYF_AutoRunApp.cs 挂到物体上即可。 using System; using System.Collections; using System.Collections.Generic; using System.IO; using Uni…...
什么是docker(docker客户端、镜像、容器、仓库)
一、docker Docker 是一个开源的容器化平台,它可以让开发者打包应用程序及其依赖项成为一个轻量级、可移植的容器,然后在任何环境中运行。Docker 容器将应用程序及其依赖项打包到一个标准化单元中,包括代码、运行时环境、系统工具、系统库等…...
[Python人工智能] 四十三.命名实体识别 (4)利用bert4keras构建Bert+BiLSTM-CRF实体识别模型
从本专栏开始,作者正式研究Python深度学习、神经网络及人工智能相关知识。前文讲解如何实现中文命名实体识别研究,构建BiGRU-CRF模型实现。这篇文章将继续以中文语料为主,介绍融合Bert的实体识别研究,使用bert4keras和kears包来构建Bert+BiLSTM-CRF模型。然而,该代码最终结…...
Android Framework开发之Linux +Vim命令
一、linux常用命令 在Android源码开发中,Linux命令的运用是至关重要的。这些命令不仅帮助开发者有效管理文件、目录和系统资源,还能在源码编译、调试和排错过程中发挥关键作用。以下是对Android源码开发中常用Linux命令的更详细介绍: 当然可…...
MySQL 索引的10 个核心要点
文章目录 🍉1. 索引底层采用什么数据结构?为什么不用hash🍉2. B树与B树区别?为何用B树?🍉3. 自增主键理解?🍉4. 为什么自增主键不连续🍉5. Innodb为什么推荐用自增ID&…...
MaixSense-A010 接入 ROS
MaixSense 是什么 MaixSense 系列产品搭载 TOF 深度摄像头,目前有 MaixSense-A010 和 MaixSense-A075V 两款产品。 MS-A010 是一款由 BL702 炬佑 100x100 TOF 模组所组成的极致性价比的 TOF 3D 传感器模组,最大支持 100x100 的分辨率和 8 位精度&…...
使用WordPress在US Domain Center上建立招聘网站的详细教程
第一部分:介绍招聘网站 招聘网站是指用于发布招聘信息、吸引求职者、进行简历筛选和管理招聘流程的网站。在WordPress中,您可以轻松地创建一个功能齐全的招聘网站,以便企业能够方便地管理招聘流程,并为求职者提供信息和应聘渠道。…...
C++:类和对象(上篇)
目录: 一:面向对象和过程的介绍 二:类的引入 三:类的定义 四:类的访问限定符以及封装 五:类的作用域 六:类的实例化 七:类对象大小的计算 八:类成员函数的this指…...
氧化铝电容的工艺结构原理及选型参数总结
🏡《总目录》 目录 1,概述2,工作原理3,结构特点4,工艺流程4.1,材料准备4.2,氧化处理4.3,薄膜处理4.4,电极制作4.5,封装4.6,测试与筛选5,选型参数5.1,电容量(Capacitance)...
野火ESP8266模块开发-基于Arduino IDE
一、野火ESP8266模块介绍 ESP8266 拥有高性能无线 SOC,给移动平台设计师带来福音,它以最低成本提供最大实用性,为 WiFi 功能嵌入其他系统提供无限可能。ESP8266 是一个完整且自成体系的 WiFi 网络解决方案,能够独立运行࿰…...
[Qt学习笔记]Qt实现自定义控件SwitchButton开关按钮
1、功能介绍 在项目UI中使用较多的打开/关闭的开关按钮,一般都是找图片去做效果,比如说如下的图像来表征打开或关闭。 如果想要控件有打开/关闭的动画效果或比较好的视觉效果,这里就可以使用自定义控件,使用Painter来绘制控件。软…...
【工具】mac 环境配置
【待补充 】 一、maven配置 vim ~/.bash_profile export M3_HOME/Users/chenyang/java_utils/apache-maven-3.6.1 export PATH$PATH:$M3_HOME/bin //mvn -v提示Permission denied 没有权限访问 chmod ax /Users/chenyang/java_utils/apache-maven-3.6.1/bin/mvn 二、java…...
【前端寻宝之路】学习和总结HTML的标签属性
🌈个人主页: Aileen_0v0 🔥热门专栏: 华为鸿蒙系统学习|计算机网络|数据结构与算法|MySQL| 💫个人格言:“没有罗马,那就自己创造罗马~” 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不…...
kafka2.x版本配置SSL进行加密和身份验证
背景:找了一圈资料,都是东讲讲西讲讲,最后我还没搞好,最终决定参考官网说明。 官网指导手册地址:Apache Kafka 需要预备的知识,keytool和openssl 关于keytool的参考:keytool的使用-CSDN博客 …...
Linux和Windows下的文件批量重命名
一、Linux下文件批量重命名 rename命令说明: Usage: rename [options] … Rename files. Options: -v, --verbose explain what is being done -s, --symlink act on the target of symlinks -n, --no-act do not make any changes -o, --no-overwrite don’t overw…...
stm32之GPIO电路介绍
文章目录 1 GPIO介绍2 GPIO的工作模式2.1 浮空输入2.2 上拉输入2.3 下拉输入2.4 模拟输入2.5 开漏输出2.6 推挽输出2.7 复用开漏输出2.8 复用推挽输出2.9 其他 3 应用方式4 常用库函数 1 GPIO介绍 保护二极管:保护引脚,让引脚的电压位于正常的范围施密特…...
Unity Toggle处理状态变化事件
Toggle处理状态变化事件,有两个方法。 法一、通过Inspector面板设置 实现步骤: 在Inspector面板中找到Toggle组件的"On Value Changed"事件。单击""按钮添加一个新的监听器。拖动一个目标对象到"None (Object)"字段&am…...
UE5.1 iClone8 正确导入角色骨骼与动作
使用iClone8插件Auto Setup 附录下载链接 里面有两个文件夹,使用Auto Setup C:\Program Files\Reallusion\Shared Plugins 在UE内新建Plugins,把插件复制进去 在工具栏出现这三个人物的图标就安装成功了 iClone选择角色,导入动作 选择导出FBX UE内直接导入 会出现是否启动插件…...
日语AI面试高效通关秘籍:专业解读与青柚面试智能助攻
在如今就业市场竞争日益激烈的背景下,越来越多的求职者将目光投向了日本及中日双语岗位。但是,一场日语面试往往让许多人感到步履维艰。你是否也曾因为面试官抛出的“刁钻问题”而心生畏惧?面对生疏的日语交流环境,即便提前恶补了…...
零门槛NAS搭建:WinNAS如何让普通电脑秒变私有云?
一、核心优势:专为Windows用户设计的极简NAS WinNAS由深圳耘想存储科技开发,是一款收费低廉但功能全面的Windows NAS工具,主打“无学习成本部署” 。与其他NAS软件相比,其优势在于: 无需硬件改造:将任意W…...
iOS 26 携众系统重磅更新,但“苹果智能”仍与国行无缘
美国西海岸的夏天,再次被苹果点燃。一年一度的全球开发者大会 WWDC25 如期而至,这不仅是开发者的盛宴,更是全球数亿苹果用户翘首以盼的科技春晚。今年,苹果依旧为我们带来了全家桶式的系统更新,包括 iOS 26、iPadOS 26…...
Python:操作 Excel 折叠
💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 Python 操作 Excel 系列 读取单元格数据按行写入设置行高和列宽自动调整行高和列宽水平…...
前端导出带有合并单元格的列表
// 导出async function exportExcel(fileName "共识调整.xlsx") {// 所有数据const exportData await getAllMainData();// 表头内容let fitstTitleList [];const secondTitleList [];allColumns.value.forEach(column > {if (!column.children) {fitstTitleL…...
质量体系的重要
质量体系是为确保产品、服务或过程质量满足规定要求,由相互关联的要素构成的有机整体。其核心内容可归纳为以下五个方面: 🏛️ 一、组织架构与职责 质量体系明确组织内各部门、岗位的职责与权限,形成层级清晰的管理网络…...
多模态大语言模型arxiv论文略读(108)
CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文标题:CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文作者:Sayna Ebrahimi, Sercan O. Arik, Tejas Nama, Tomas Pfister ➡️ 研究机构: Google Cloud AI Re…...
什么?连接服务器也能可视化显示界面?:基于X11 Forwarding + CentOS + MobaXterm实战指南
文章目录 什么是X11?环境准备实战步骤1️⃣ 服务器端配置(CentOS)2️⃣ 客户端配置(MobaXterm)3️⃣ 验证X11 Forwarding4️⃣ 运行自定义GUI程序(Python示例)5️⃣ 成功效果中的KV缓存压缩与动态稀疏注意力机制设计
随着大语言模型(LLM)参数规模的增长,推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长,而KV缓存的内存消耗可能高达数十GB(例如Llama2-7B处理100K token时需50GB内存&a…...
