sheng的学习笔记-AI-Network in Network(NIN)和1*1卷积
目录:sheng的学习笔记-AI目录-CSDN博客
简介
Network In Network 是发表于 2014 年 ICLR 的一篇 paper。当前被引了 3298 次。这篇文章采用较少参数就取得了 Alexnet 的效果,Alexnet 参数大小为 230M,而 Network In Network 仅为 29M,这篇 paper 主要两大亮点:mlpconv (multilayer perceptron,MLP,多层感知机)作为 "micro network"和 Global Average Pooling(全局平均池化)
论文地址:https://arxiv.org/abs/1312.4400
Network in Network架构
多层感知机(MLP)
在介绍 mlpconv Layer 之前,我们先看看经典的 Linear Convolutional Layer(线性卷积层)是怎么进行操作的,


(i, j) 是特征图中像素的位置索引,x_ij 表示像素值,而 k 用于特征图通道的索引,W 是参数,经过 WX 计算以后经过一个 relu 激活进行特征的抽象表示。
下面就介绍 mlpconv Layer 结构

- 红框部分是在进行传统的卷积,可见卷积使用了多个filters。图中竖排圆圈是卷积得到的feature maps在某个位置上所有通道的数值,而不是某个feature map。这也是为了简单直观。
- 图中蓝色框部分是MLP的前两层,最后一层在mlpconv layer输出的feature map上,只有一个节点,即蓝色框后面的小立方体
- MLP是在多组feature maps的同一位置建立的,而且feature maps每个通道内的元素前一组feature maps中对应元素连接的权重相同(想象1*1卷积)
- MLP计算过程中得到的feature maps长宽一致。理解不了的话可以从1*1卷积的角度思考

式中,n是多层感知器层数,从max()也可以看出多层感知器中使用的激活函数是Rectified linear unit。该计算过程等同于在一个传统的卷积层之后连接级联的跨通道参数池化层。每一个池化层先在输入的feature maps上进行加权线性重构,然后将结果输入一个rectifier linear unit激活。
跨通道池化得到feature maps接下来会在后面的layers中重复被跨通道池化。这种级联的跨通道参数池化结构(cascaded cross channel parameteric pooling structure)允许复杂的可学习的跨通道信息交互。
跨通道参数池化层就相当于一个卷积核为1*1的 linear convolution layer(包括激活函数)
Global Average Pooling Layer
之前的卷积神经网络的最后会加一层全连接来进行分类,但是,全连接层具有非常大的参数量,导致模型非常容易过拟合。因此,全局平均池化的出现替代了全连接层。我们在最后一层 mlpconv 得到的特征图使用全局平均池化(也就是取每个特征图的平均值)进而将结果输入到 softmax 层中。
全局平均池化的优点
- 全局平均池化没有参数,可以避免过拟合产生。
- 全局平均池可以对空间信息进行汇总,因此对输入的空间转换具有更强的鲁棒性。
下图是全连接层和全局平均池化的一个对比图

具体是:在最后一层mlpconv layer中为分类任务中的每一个类生成一个feature map;后面不接全连接网络,而是取每个feature map的均值,这样就得到一个长度为N的向量,与类别对应;添加softmax层,前面的向量直接传入计算,这样就得到了每个类别的概率。
总体架构图
1000物体分类:4层NIN+全局均值池化

1*1卷积

1 * 1卷积实际上就是对特征图所有channel对应的像素点做全连接网络,由于它只考虑了1个像素点,它不像3 * 3卷积那样可以考虑周围像素点,但是可以让特征图在不需要padding的情况下保证的H、W不变,也就是融合了买个像素点不同通道的特征所以它也有跨通道交融的作用。卷积核的数量决定了输出的维度,所以用1 * 1卷积只会改变特征图的channel数,这也就是1 * 1卷积有升维 、降维的作用,在维度降低的同时,计算量也就减少了,模型速度会变快,与此同时,它在保留了空间信息的同时,还增加了非线性激活函数,非线性激活函数可以增加模型的复杂程度,让模型逼近更复杂的曲线。
如果是一张6×6×32的图片,那么使用1×1过滤器进行卷积效果更好。具体来说,1×1卷积所实现的功能是遍历这36个单元格,计算左图中32个数字和过滤器中32个数字的元素积之和,然后应用ReLU非线性函数。


假设这是一个28×28×192的输入层,你可以使用池化层压缩它的高度和宽度,这个过程我们很清楚。但如果通道数量很大,该如何把它压缩为28×28×32维度的层呢?你可以用32个大小为1×1的过滤器,严格来讲每个过滤器大小都是1×1×192维,因为过滤器中通道数量必须与输入层中通道的数量保持一致。但是你使用了32个过滤器,输出层为28×28×32,这就是压缩通道数(nc)的方法,对于池化层我只是压缩了这些层的高度和宽度。

在之后我们看到在某些网络中1×1卷积是如何压缩通道数量并减少计算的。当然如果你想保持通道数192不变,这也是可行的,1×1卷积只是添加了非线性函数,当然也可以让网络学习更复杂的函数,比如,我们再添加一层,其输入为28×28×192,输出为28×28×192。

1*1的卷积,可以给神经网络添加了一个非线性函数,从而减少或保持输入层中的通道数量不变,当然如果你愿意,也可以增加通道数量

参考文章:
卷积神经网络之-NiN网络(Network In Network)-CSDN博客
https://www.cnblogs.com/Lilu-1226/p/10588137.html
深度学习:NiN(Network In Network)详细讲解与代码实现-云社区-华为云
吴恩达的深度学习
相关文章:
sheng的学习笔记-AI-Network in Network(NIN)和1*1卷积
目录:sheng的学习笔记-AI目录-CSDN博客 简介 Network In Network 是发表于 2014 年 ICLR 的一篇 paper。当前被引了 3298 次。这篇文章采用较少参数就取得了 Alexnet 的效果,Alexnet 参数大小为 230M,而 Network In Network 仅为 29M&#x…...
【靶机测试--PHOTOGRAPHER: 1【php提权】】
前期准备 靶机下载地址: https://vulnhub.com/entry/photographer-1%2C519/ 信息收集 nmap 扫描同网段 ┌──(root㉿kali)-[/home/test/桌面] └─# nmap -sP 192.168.47.0/24 --min-rate 3333 Starting Nmap 7.92 ( https://nmap.org ) at 2024-03-19 07:37 …...
LeetCode每日一题——删除有序数组中的重复项
删除有序数组中的重复项OJ链接:26. 删除有序数组中的重复项 - 力扣(LeetCode) 题目: 思路: 题目要求每个数只能出现一次,然后返回新数组的长度。仔细一看,其实与我们之前的移除元素那道题十分…...
元宇宙VR数字化艺术展降低办展成本
元宇宙AI时代已经来临,越来越多人期待在元宇宙数字空间搭建一个属于自己的虚拟展厅,元宇宙虚拟展厅搭建平台是VR公司深圳华锐视点为企业研发的可编辑工具,那么元宇宙虚拟展厅搭建平台有哪些新突破? 元宇宙虚拟展厅搭建平台采用了先进的web3D…...
聚类分析 | Matlab实现基于PCA+DBO+K-means的数据聚类可视化
聚类分析 | Matlab实现基于PCADBOK-means的数据聚类可视化 目录 聚类分析 | Matlab实现基于PCADBOK-means的数据聚类可视化效果一览基本介绍程序设计参考资料 效果一览 基本介绍 PCA(主成分分析)、DBO(蜣螂优化算法)和K-means聚类…...
使用 git 先提交后拉取的时候远程分支不允许问题
问题场景 修改本地代码使用 git 先提交后拉取的时候远程分支不允许的问题 修改本地代码时,远程分支存在其他新提交先执行了 git commit -m xxx update然后再执行 git pull 拉取远程分支代码,出现如下提示 hint: You have divergent branches and need…...
Unity 创建快捷方式开机自动启动
Unity 创建快捷方式自动启动 🌭食用方法 🌭食用方法 先导入插件包👈,再 把导入的ZYF_AutoRunApp.cs 挂到物体上即可。 using System; using System.Collections; using System.Collections.Generic; using System.IO; using Uni…...
什么是docker(docker客户端、镜像、容器、仓库)
一、docker Docker 是一个开源的容器化平台,它可以让开发者打包应用程序及其依赖项成为一个轻量级、可移植的容器,然后在任何环境中运行。Docker 容器将应用程序及其依赖项打包到一个标准化单元中,包括代码、运行时环境、系统工具、系统库等…...
[Python人工智能] 四十三.命名实体识别 (4)利用bert4keras构建Bert+BiLSTM-CRF实体识别模型
从本专栏开始,作者正式研究Python深度学习、神经网络及人工智能相关知识。前文讲解如何实现中文命名实体识别研究,构建BiGRU-CRF模型实现。这篇文章将继续以中文语料为主,介绍融合Bert的实体识别研究,使用bert4keras和kears包来构建Bert+BiLSTM-CRF模型。然而,该代码最终结…...
Android Framework开发之Linux +Vim命令
一、linux常用命令 在Android源码开发中,Linux命令的运用是至关重要的。这些命令不仅帮助开发者有效管理文件、目录和系统资源,还能在源码编译、调试和排错过程中发挥关键作用。以下是对Android源码开发中常用Linux命令的更详细介绍: 当然可…...
MySQL 索引的10 个核心要点
文章目录 🍉1. 索引底层采用什么数据结构?为什么不用hash🍉2. B树与B树区别?为何用B树?🍉3. 自增主键理解?🍉4. 为什么自增主键不连续🍉5. Innodb为什么推荐用自增ID&…...
MaixSense-A010 接入 ROS
MaixSense 是什么 MaixSense 系列产品搭载 TOF 深度摄像头,目前有 MaixSense-A010 和 MaixSense-A075V 两款产品。 MS-A010 是一款由 BL702 炬佑 100x100 TOF 模组所组成的极致性价比的 TOF 3D 传感器模组,最大支持 100x100 的分辨率和 8 位精度&…...
使用WordPress在US Domain Center上建立招聘网站的详细教程
第一部分:介绍招聘网站 招聘网站是指用于发布招聘信息、吸引求职者、进行简历筛选和管理招聘流程的网站。在WordPress中,您可以轻松地创建一个功能齐全的招聘网站,以便企业能够方便地管理招聘流程,并为求职者提供信息和应聘渠道。…...
C++:类和对象(上篇)
目录: 一:面向对象和过程的介绍 二:类的引入 三:类的定义 四:类的访问限定符以及封装 五:类的作用域 六:类的实例化 七:类对象大小的计算 八:类成员函数的this指…...
氧化铝电容的工艺结构原理及选型参数总结
🏡《总目录》 目录 1,概述2,工作原理3,结构特点4,工艺流程4.1,材料准备4.2,氧化处理4.3,薄膜处理4.4,电极制作4.5,封装4.6,测试与筛选5,选型参数5.1,电容量(Capacitance)...
野火ESP8266模块开发-基于Arduino IDE
一、野火ESP8266模块介绍 ESP8266 拥有高性能无线 SOC,给移动平台设计师带来福音,它以最低成本提供最大实用性,为 WiFi 功能嵌入其他系统提供无限可能。ESP8266 是一个完整且自成体系的 WiFi 网络解决方案,能够独立运行࿰…...
[Qt学习笔记]Qt实现自定义控件SwitchButton开关按钮
1、功能介绍 在项目UI中使用较多的打开/关闭的开关按钮,一般都是找图片去做效果,比如说如下的图像来表征打开或关闭。 如果想要控件有打开/关闭的动画效果或比较好的视觉效果,这里就可以使用自定义控件,使用Painter来绘制控件。软…...
【工具】mac 环境配置
【待补充 】 一、maven配置 vim ~/.bash_profile export M3_HOME/Users/chenyang/java_utils/apache-maven-3.6.1 export PATH$PATH:$M3_HOME/bin //mvn -v提示Permission denied 没有权限访问 chmod ax /Users/chenyang/java_utils/apache-maven-3.6.1/bin/mvn 二、java…...
【前端寻宝之路】学习和总结HTML的标签属性
🌈个人主页: Aileen_0v0 🔥热门专栏: 华为鸿蒙系统学习|计算机网络|数据结构与算法|MySQL| 💫个人格言:“没有罗马,那就自己创造罗马~” 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不…...
kafka2.x版本配置SSL进行加密和身份验证
背景:找了一圈资料,都是东讲讲西讲讲,最后我还没搞好,最终决定参考官网说明。 官网指导手册地址:Apache Kafka 需要预备的知识,keytool和openssl 关于keytool的参考:keytool的使用-CSDN博客 …...
【Axure高保真原型】引导弹窗
今天和大家中分享引导弹窗的原型模板,载入页面后,会显示引导弹窗,适用于引导用户使用页面,点击完成后,会显示下一个引导弹窗,直至最后一个引导弹窗完成后进入首页。具体效果可以点击下方视频观看或打开下方…...
51c自动驾驶~合集58
我自己的原文哦~ https://blog.51cto.com/whaosoft/13967107 #CCA-Attention 全局池化局部保留,CCA-Attention为LLM长文本建模带来突破性进展 琶洲实验室、华南理工大学联合推出关键上下文感知注意力机制(CCA-Attention),…...
Unity3D中Gfx.WaitForPresent优化方案
前言 在Unity中,Gfx.WaitForPresent占用CPU过高通常表示主线程在等待GPU完成渲染(即CPU被阻塞),这表明存在GPU瓶颈或垂直同步/帧率设置问题。以下是系统的优化方案: 对惹,这里有一个游戏开发交流小组&…...
Python爬虫(一):爬虫伪装
一、网站防爬机制概述 在当今互联网环境中,具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类: 身份验证机制:直接将未经授权的爬虫阻挡在外反爬技术体系:通过各种技术手段增加爬虫获取数据的难度…...
关于 WASM:1. WASM 基础原理
一、WASM 简介 1.1 WebAssembly 是什么? WebAssembly(WASM) 是一种能在现代浏览器中高效运行的二进制指令格式,它不是传统的编程语言,而是一种 低级字节码格式,可由高级语言(如 C、C、Rust&am…...
精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南
精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南 在数字化营销时代,邮件列表效度、用户参与度和网站性能等指标往往决定着创业公司的增长成败。今天,我们将深入解析邮件打开率、网站可用性、页面参与时…...
项目部署到Linux上时遇到的错误(Redis,MySQL,无法正确连接,地址占用问题)
Redis无法正确连接 在运行jar包时出现了这样的错误 查询得知问题核心在于Redis连接失败,具体原因是客户端发送了密码认证请求,但Redis服务器未设置密码 1.为Redis设置密码(匹配客户端配置) 步骤: 1).修…...
JS设计模式(4):观察者模式
JS设计模式(4):观察者模式 一、引入 在开发中,我们经常会遇到这样的场景:一个对象的状态变化需要自动通知其他对象,比如: 电商平台中,商品库存变化时需要通知所有订阅该商品的用户;新闻网站中࿰…...
AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别
【导读】 野生动物监测在理解和保护生态系统中发挥着至关重要的作用。然而,传统的野生动物观察方法往往耗时耗力、成本高昂且范围有限。无人机的出现为野生动物监测提供了有前景的替代方案,能够实现大范围覆盖并远程采集数据。尽管具备这些优势…...
在Mathematica中实现Newton-Raphson迭代的收敛时间算法(一般三次多项式)
考察一般的三次多项式,以r为参数: p[z_, r_] : z^3 (r - 1) z - r; roots[r_] : z /. Solve[p[z, r] 0, z]; 此多项式的根为: 尽管看起来这个多项式是特殊的,其实一般的三次多项式都是可以通过线性变换化为这个形式…...
