当前位置: 首页 > news >正文

阿里云-零基础入门NLP【基于机器学习的文本分类】

文章目录

  • 学习过程
  • 赛题理解
  • 学习目标
  • 赛题数据
  • 数据标签
  • 评测指标
  • 解题思路
  • TF-IDF介绍
  • TF-IDF + 机器学习分类器
    • TF-IDF + LinearSVC
    • TF-IDF + LGBMClassifier


学习过程

20年当时自身功底是比较零基础(会写些基础的Python[三个科学计算包]数据分析),一开始看这块其实挺懵的,不会就去问百度或其他人,当时遇见困难挺害怕的,但22后面开始力扣题【目前已刷好几轮,博客没写力扣文章之前,力扣排名靠前已刷有5遍左右,排名靠后刷3次左右,代码功底也在一步一步提升】不断地刷、遇见代码不懂的代码,也开始去打印print去理解,到后面问其他人的问题越来越少,个人自主学习、自主解决能力也得到了进一步增强。

赛题理解

  • 赛题名称:零基础入门NLP之新闻文本分类
  • 赛题目标:通过这道赛题可以引导大家走入自然语言处理的世界,带大家接触NLP的预处理、模型构建和模型训练等知识点。
  • 赛题任务:赛题以自然语言处理为背景,要求选手对新闻文本进行分类,这是一个典型的字符识别问题。

学习目标

  • 理解赛题背景与赛题数据
  • 完成赛题报名和数据下载,理解赛题的解题思路

赛题数据

赛题以匿名处理后的新闻数据为赛题数据,数据集报名后可见并可下载。赛题数据为新闻文本,并按照字符级别进行匿名处理。整合划分出14个候选分类类别:财经、彩票、房产、股票、家居、教育、科技、社会、时尚、时政、体育、星座、游戏、娱乐的文本数据。

赛题数据由以下几个部分构成:训练集20w条样本,测试集A包括5w条样本,测试集B包括5w条样本。为了预防选手人工标注测试集的情况,我们将比赛数据的文本按照字符级别进行了匿名处理。

数据标签

处理后的赛题训练数据如下:
Image
在数据集中标签的对应的关系如下:{‘科技’: 0, ‘股票’: 1, ‘体育’: 2, ‘娱乐’: 3, ‘时政’: 4, ‘社会’: 5, ‘教育’: 6, ‘财经’: 7, ‘家居’: 8, ‘游戏’: 9, ‘房产’: 10, ‘时尚’: 11, ‘彩票’: 12, ‘星座’: 13}

评测指标

评价标准为类别f1_score的均值,选手提交结果与实际测试集的类别进行对比,结果越大越好。

解题思路

赛题思路分析:赛题本质是一个文本分类问题,需要根据每句的字符进行分类。但赛题给出的数据是匿名化的,不能直接使用中文分词等操作,这个是赛题的难点。

因此本次赛题的难点是需要对匿名字符进行建模,进而完成文本分类的过程。由于文本数据是一种典型的非结构化数据,因此可能涉及到特征提取和分类模型两个部分。为了减低参赛难度,我们提供了一些解题思路供大家参考:

思路1:TF-IDF + 机器学习分类器
直接使用TF-IDF对文本提取特征,并使用分类器进行分类。在分类器的选择上,可以使用SVM、LR、或者XGBoost。

思路2:FastText
FastText是入门款的词向量,利用Facebook提供的FastText工具,可以快速构建出分类器。

思路3:WordVec + 深度学习分类器
WordVec是进阶款的词向量,并通过构建深度学习分类完成分类。深度学习分类的网络结构可以选择TextCNN、TextRNN或者BiLSTM。

思路4:Bert词向量
Bert是高配款的词向量,具有强大的建模学习能力。

这里使用思路1(TF-IDF + 机器学习分类器) 及 思路4(Bert词向量)

TF-IDF介绍

TF-IDF 分数由两部分组成:第一部分是词语频率(Term Frequency),第二部分是逆文档频率(Inverse Document Frequency)。其中计算语料库中文档总数除以含有该词语的文档数量,然后再取对数就是逆文档频率。

TF(t)= 该词语在当前文档出现的次数 / 当前文档中词语的总数
IDF(t)= log_e(文档总数 / 出现该词语的文档总数)

TF-IDF + 机器学习分类器

TF-IDF + LinearSVC

# TF-IDF +  LinearSVC
import numpy as np
import pandas as pd
from sklearn.model_selection import KFold
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.svm import LinearSVC
from sklearn.metrics import f1_score, confusion_matrix, recall_score, precision_scoreprint("开始读取数据")
train_df = pd.read_csv('train_set.csv', sep='\t')
test_df = pd.read_csv('test_a.csv', sep='\t')
print("结束读取数据")print("开始tfidf")
tfidf = TfidfVectorizer(sublinear_tf=True,strip_accents='unicode',analyzer='word',token_pattern=r'\w{1,}',stop_words='english',ngram_range=(1,3),max_features=10000)tfidf.fit(pd.concat([train_df['text'], test_df['text']]))
train_word_features = tfidf.transform(train_df['text'])
test_word_features = tfidf.transform(test_df['text'])X_train = train_word_features
y_train = train_df['label']
X_test = test_word_features
print("结束tfidf")print("开始TF-IDF +  LinearSVC")
# https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html#sklearn.model_selection.KFold
KF = KFold(n_splits=10, random_state=7)
clf = LinearSVC()
test_pred = np.zeros((X_test.shape[0], 1), int)  # 存储测试集预测结果 行数:len(X_test) ,列数:1列
for KF_index, (train_index,valid_index) in enumerate(KF.split(X_train)):print('第', KF_index+1, '折交叉验证开始...')# 训练集划分x_train_, x_valid_ = X_train[train_index], X_train[valid_index]y_train_, y_valid_ = y_train[train_index], y_train[valid_index]# 模型构建clf.fit(x_train_, y_train_)# 模型预测val_pred = clf.predict(x_valid_)print("LinearSVC准确率为:",f1_score(y_valid_, val_pred, average='macro'))# 保存测试集预测结果test_pred = np.column_stack((test_pred, clf.predict(X_test)))  # 将矩阵按列合并
# 取测试集中预测数量最多的数
preds = []
for i, test_list in enumerate(test_pred):preds.append(np.argmax(np.bincount(test_list)))
preds = np.array(preds)result = pd.DataFrame(preds, columns=['label'])
result.to_csv("TFIDF_LinearSVC_submission_0304.csv", encoding='gbk', index=False)
print("结束TF-IDF +  LinearSVC")

score:0.9410

TF-IDF + LGBMClassifier

# https://github.com/Goldgaruda/Tianchi-NLP-News-Text-Classification-Rank-5-solution/blob/main/tfidf/cv.py
import numpy as np
import pandas as pd
from sklearn.model_selection import KFold
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics import f1_score
from lightgbm import LGBMClassifierprint("开始读取数据")
train_df = pd.read_csv('train_set.csv', sep='\t')
test_df = pd.read_csv('test_a.csv', sep='\t')
print("结束读取数据")print("开始tfidf")
tfidf = TfidfVectorizer(sublinear_tf=True,strip_accents='unicode',analyzer='word',token_pattern=r'\w{1,}',stop_words='english',ngram_range=(1,3),max_features=10000)print('train_df.head():', train_df.head())tfidf.fit(np.concatenate((train_df['text'].iloc[:].values,test_df['text'].iloc[:].values),axis=0))
train_word_features = tfidf.transform(train_df['text'].iloc[:].values)
test_word_features = tfidf.transform(test_df['text'].iloc[:].values)X_train = train_word_features
y_train = train_df['label']
X_test = test_word_features
print("开始tfidf")print("开始TF-IDF +  LGBMClassifier")
KF = KFold(n_splits=5, random_state=7) 
clf = LGBMClassifier(n_jobs=-1, feature_fraction=0.7, bagging_fraction=0.4, lambda_l1=0.001, lambda_l2=0.01, n_estimators=600)# 存储测试集预测结果 行数:len(X_test) ,列数:1列
test_pred = np.zeros((X_test.shape[0], 1), int)for KF_index, (train_index,valid_index) in enumerate(KF.split(X_train)):print('第', KF_index+1, '折交叉验证开始...')# 训练集划分x_train_, x_valid_ = X_train[train_index], X_train[valid_index]y_train_, y_valid_ = y_train[train_index], y_train[valid_index]# 模型构建clf.fit(x_train_, y_train_)# 模型预测val_pred = clf.predict(x_valid_)print("LGBMClassifier准确率为:",f1_score(y_valid_, val_pred, average='macro'))# 保存测试集预测结果test_pred = np.column_stack((test_pred, clf.predict(X_test)))  # 将矩阵按列合并# 取测试集中预测数量最多的数
preds = []
for i, test_list in enumerate(test_pred):preds.append(np.argmax(np.bincount(test_list)))
preds = np.array(preds)result = pd.DataFrame(preds, columns=['label'])
result.to_csv("TFIDF_LGBMClassifier_submission_0304.csv", encoding='gbk', index=False)
print("结束TF-IDF +  LGBMClassifier")

score:0.9509

比赛源自:阿里云天池大赛 - 零基础入门NLP - 新闻文本分类

相关文章:

阿里云-零基础入门NLP【基于机器学习的文本分类】

文章目录 学习过程赛题理解学习目标赛题数据数据标签评测指标解题思路TF-IDF介绍TF-IDF 机器学习分类器TF-IDF LinearSVCTF-IDF LGBMClassifier 学习过程 20年当时自身功底是比较零基础(会写些基础的Python[三个科学计算包]数据分析),一开始看这块其实挺懵的&am…...

蓝桥杯模块综合——高质量讲解AT24C02,BS18B20,BS1302,AD/DA(PCF8591),超声波模块

AT24C02——就是一个存储的东西,可以给他写东西,掉电不丢失。 void EEPROM_Write(unsigned char * EEPROM_String,unsigned char addr , unsigned char num) {IIC_Start();IIC_SendByte(0xA0);IIC_WaitAck();IIC_SendByte(addr);IIC_WaitAck();while(nu…...

前端跨平台开发框架:简化多端开发的利器

🤍 前端开发工程师、技术日更博主、已过CET6 🍨 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 🕠 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》 🍚 蓝桥云课签约作者、上架课程《Vue.js 和 E…...

cesium.js加载模型后,重新设置旋转角度属性值

// 加载模型var position Cesium.Cartesian3.fromDegrees(longitude, latitude, height);// 计算矩阵var rollAngleDegrees 15; // 设置翻滚角度var rollAngleRadians Cesium.Math.toRadians(rollAngleDegrees); // 将角度转换为弧度var orientation Cesium.Transforms.eas…...

②免费AI软件开发工具测评:通义灵码 VS 码上飞

前言 我又双叒叕来测评了!上次给大家带来的是iFlyCode和CodeFlying两款产品的测评,受到了大家的一致好评~ 今天咱就继续来聊聊,这次我们选的的对象是通义灵码和码上飞,从名字上也能看到出来这两款产品一定是跟软件开发有关系的&…...

幻兽帕鲁游戏搭建(docker)

系列文章目录 第一章: 幻兽帕陆游戏搭建 文章目录 系列文章目录前言一、镜像安装1.创建游戏目录2.拉取镜像3.下载配置文件4.启动游戏 二、自定义配置总结 前言 这段时间一直在写论文还有找工作,也没学啥新技术,所以博客也很长时间没写了&am…...

unity报错出现Asset database transaction committed twice!

错误描述: 运行时报错 Assertion failed on expression: ‘m_ErrorCode MDB_MAP_RESIZED || !HasAbortingErrors()’Asset database transaction committed twice!Assertion failed on expression: ‘errors MDB_SUCCESS || errors MDB_NOTFOUND’ 解决办法&…...

去除项目git的控制 端口号的关闭

以下操作都是在windows下。只是记录一下。 find . -name “.git” | xargs rm -rf 查看所有分支 git branch -a 查看当前分支 git branch -a 切换分支 git chenkout develop docker 查看容器的ip docker inspect -f ‘{{.Name}} - {{range .NetworkSettings.Networks}}{{.IP…...

交叉注意力融合时域、频域特征的FFT + CNN -BiLSTM-CrossAttention电能质量扰动识别模型

往期精彩内容: 电能质量扰动信号数据介绍与分类-Python实现-CSDN博客 Python电能质量扰动信号分类(一)基于LSTM模型的一维信号分类-CSDN博客 Python电能质量扰动信号分类(二)基于CNN模型的一维信号分类-CSDN博客 Python电能质量扰动信号分类(三)基于Transformer…...

简单的Charles抓包教程

安装Charles 安装地址:https://www.charlesproxy.com/download/ 开关本机抓包 一般我们在抓取手机端内容时需要将Proxy菜单栏下的Windows Proxy取消勾选,禁止charles抓取本机上的请求信息。 注:开启电脑端抓包后,会为电脑添加局…...

如何构建Docker自定义镜像

说明:平常我们使用Docker运行各种容器,极大地方便了我们对开发应用的使用,如MySQL、Redis,以及各种中间件,使用时只要拉镜像,运行容器即可。本文介绍如何创建一个Demo,自定义构建一个镜像。 开…...

一起学数据分析_2

写在前面:代码运行环境为jupyter,如果结果显示不出来的地方就加一个print()函数。 一、数据基本处理 缺失值处理: import numpy as np import pandas as pd#加载数据train.csv df pd.read_csv(train_chinese.csv) df.head()# 查看数据基本…...

请解释Redis是什么?它有哪些主要应用场景?Redis支持哪些数据类型?并描述每种数据类型的特性和使用场景。

请解释Redis是什么?它有哪些主要应用场景? Redis是一款内存高速缓存NoSQL数据库,使用C语言编写,它支持丰富的数据类型,如String、list、set、zset、hash等,并且这些数据类型都直接支持数据的原子性操作&…...

在centos8中部署Tomcat和Jenkins

参考链接1:tomcat安装和部署jenkins_jenkins和tomcat-CSDN博客 参考链接2:--配置开机启动tomcat文件 x​​​​​​超详细:Centos8安装Tomcat并配置开机自动启动_centos设置tomcat开机自启-CSDN博客文章浏览阅读4.4k次,点赞4次&…...

机器学习模型—K means

文章目录 机器学习模型—K means聚类的目标k 均值原理k 均值 的实现手动实现Python 实现K 的确定 手肘法总结机器学习模型—K means K-Means 聚类是一种无监督机器学习算法,它将未标记的数据集分为不同的簇。本文旨在探讨 k 均值聚类的基本原理和工作原理以及实现。 无监督机…...

QT UI设计

在QT中添加VTK 在main函数中初始化 //VTK的初始化语句 #ifndef INITIAL_OPENGL #define INITIAL_OPENGL #include <vtkAutoInit.h> VTK_MODULE_INIT(vtkRenderingOpenGL); VTK_MODULE_INIT(vtkInteractionStyle); VTK_MODULE_INIT(vtkRenderingVolumeOpenGL); VTK_MODU…...

前端小白的学习之路(CSS3 一)

提示&#xff1a;CSS3 是 Cascading Style Sheets&#xff08;层叠样式表&#xff09;的第三个主要版本&#xff0c;引入了许多新的特性和增强功能&#xff0c;用于设计和布局网页。本章记录CSS3新增选择器&#xff0c;盒子模型。 目录 一、C3新增选择器 1) 属性选择器 1.[c…...

春暖花开,一起来看看2024年品牌春分海报吧!

春分&#xff08;Vernal equinox&#xff09;已至&#xff0c;春花烂漫、燕子归来、百草回芽。 今天我们要分享的是2024年品牌发布的春分节气海报合集&#xff0c;快来随我们一起感受这昂扬、蓬勃的春意吧! &#xff08;1&#xff09;泸州老窖 &#xff08;2&#xff09;BD…...

golang面试题总结

零、go与其他语言 0、什么是面向对象 在了解 Go 语言是不是面向对象&#xff08;简称&#xff1a;OOP&#xff09; 之前&#xff0c;我们必须先知道 OOP 是啥&#xff0c;得先给他 “下定义” 根据 Wikipedia 的定义&#xff0c;我们梳理出 OOP 的几个基本认知&#xff1a; …...

BUGKU-WEB shell

题目描述 题目截图如下&#xff1a; 描述&#xff1a; $poc "a#s#s#e#r#t";$poc_1 explode("#", $poc);$poc_2 $poc_1[0].$poc_1[1].$poc_1[2].$poc_1[3].$poc_1[4].$poc_1[5];$poc_2($_GET[s])进入场景看看&#xff1a;是一个空白的界面 解题思路 …...

Docker 离线安装指南

参考文章 1、确认操作系统类型及内核版本 Docker依赖于Linux内核的一些特性&#xff0c;不同版本的Docker对内核版本有不同要求。例如&#xff0c;Docker 17.06及之后的版本通常需要Linux内核3.10及以上版本&#xff0c;Docker17.09及更高版本对应Linux内核4.9.x及更高版本。…...

调用支付宝接口响应40004 SYSTEM_ERROR问题排查

在对接支付宝API的时候&#xff0c;遇到了一些问题&#xff0c;记录一下排查过程。 Body:{"datadigital_fincloud_generalsaas_face_certify_initialize_response":{"msg":"Business Failed","code":"40004","sub_msg…...

基于ASP.NET+ SQL Server实现(Web)医院信息管理系统

医院信息管理系统 1. 课程设计内容 在 visual studio 2017 平台上&#xff0c;开发一个“医院信息管理系统”Web 程序。 2. 课程设计目的 综合运用 c#.net 知识&#xff0c;在 vs 2017 平台上&#xff0c;进行 ASP.NET 应用程序和简易网站的开发&#xff1b;初步熟悉开发一…...

在HarmonyOS ArkTS ArkUI-X 5.0及以上版本中,手势开发全攻略:

在 HarmonyOS 应用开发中&#xff0c;手势交互是连接用户与设备的核心纽带。ArkTS 框架提供了丰富的手势处理能力&#xff0c;既支持点击、长按、拖拽等基础单一手势的精细控制&#xff0c;也能通过多种绑定策略解决父子组件的手势竞争问题。本文将结合官方开发文档&#xff0c…...

PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建

制造业采购供应链管理是企业运营的核心环节&#xff0c;供应链协同管理在供应链上下游企业之间建立紧密的合作关系&#xff0c;通过信息共享、资源整合、业务协同等方式&#xff0c;实现供应链的全面管理和优化&#xff0c;提高供应链的效率和透明度&#xff0c;降低供应链的成…...

如何为服务器生成TLS证书

TLS&#xff08;Transport Layer Security&#xff09;证书是确保网络通信安全的重要手段&#xff0c;它通过加密技术保护传输的数据不被窃听和篡改。在服务器上配置TLS证书&#xff0c;可以使用户通过HTTPS协议安全地访问您的网站。本文将详细介绍如何在服务器上生成一个TLS证…...

微信小程序云开发平台MySQL的连接方式

注&#xff1a;微信小程序云开发平台指的是腾讯云开发 先给结论&#xff1a;微信小程序云开发平台的MySQL&#xff0c;无法通过获取数据库连接信息的方式进行连接&#xff0c;连接只能通过云开发的SDK连接&#xff0c;具体要参考官方文档&#xff1a; 为什么&#xff1f; 因为…...

mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包

文章目录 现象&#xff1a;mysql已经安装&#xff0c;但是通过rpm -q 没有找mysql相关的已安装包遇到 rpm 命令找不到已经安装的 MySQL 包时&#xff0c;可能是因为以下几个原因&#xff1a;1.MySQL 不是通过 RPM 包安装的2.RPM 数据库损坏3.使用了不同的包名或路径4.使用其他包…...

iOS性能调优实战:借助克魔(KeyMob)与常用工具深度洞察App瓶颈

在日常iOS开发过程中&#xff0c;性能问题往往是最令人头疼的一类Bug。尤其是在App上线前的压测阶段或是处理用户反馈的高发期&#xff0c;开发者往往需要面对卡顿、崩溃、能耗异常、日志混乱等一系列问题。这些问题表面上看似偶发&#xff0c;但背后往往隐藏着系统资源调度不当…...

【无标题】路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论

路径问题的革命性重构&#xff1a;基于二维拓扑收缩色动力学模型的零点隧穿理论 一、传统路径模型的根本缺陷 在经典正方形路径问题中&#xff08;图1&#xff09;&#xff1a; mermaid graph LR A((A)) --- B((B)) B --- C((C)) C --- D((D)) D --- A A -.- C[无直接路径] B -…...