当前位置: 首页 > news >正文

「数据分析」之零基础入门数据挖掘

摘要:对于数据挖掘项目,本文将学习应该从哪些角度分析数据?如何对数据进行整体把握,如何处理异常值与缺失值,从哪些维度进行特征及预测值分析?

探索性数据分析(Exploratory Data Analysis,EDA)是指对已有数据在尽量少的先验假设下通过作图、制表、方程拟合、计算特征量等手段探索数据的结构和规律的一种数据分析方法。

数据及背景

https://tianchi.aliyun.com/competition/entrance/231784/information(阿里天池-零基础入门数据挖掘)

EDA的目标

  • 熟悉数据集,了解数据集,对数据集进行验证来确定所获得数据集可以用于接下来的机器学习或者深度学习使用。

  • 了解变量间的相互关系以及变量与预测值之间的存在关系。

  • 引导数据科学从业者进行数据处理以及特征工程的步骤,使数据集的结构和特征集让接下来的预测问题更加可靠。

数据载入及总览

载入各种数据科学以及可视化库

missingno库用于可视化缺失值分布,是基于matplotlib的,接受pandas数据源

import pandas as pdimport numpy as npimport matplotlib.pyplot as pltimport seaborn as snsimport missingno as msno  # 用于可视化缺失值分布import scipy.stats as st

载入数据

path = './data/'Train_data = pd.read_csv(path+'used_car_train_20200313.csv', sep=' ')Test_data = pd.read_csv(path+'used_car_testA_20200313.csv', sep=' ')

所有特征集均脱敏处理,脱敏处理后均为label encoding形式,即数字形式

总览数据

简略观察数据head()+shape

Train_data.head().append(Train_data.tail())Test_data.head().append(Test_data.tail())Train_data.shapeTest_data.shape

describe()熟悉相关统计量

describe()中包含每列的统计量,个数(count)、平均值(mean)、方差(std)、最小值(min)、中位数(25% 50% 75%)、最大值(max)等。通过观察以上指标,可以瞬间掌握数据的大概范围和每个值的异常值的判断 ,例如有时候会发现999 9999、 -1 等值这些其实都是nan的另外一种表达方式。

Train_data.describe()

info()熟悉数据类型

通过info()来了解数据每列的type,有助于了解是否存在除了nan以外的特殊符号异常。

Train_data.info()

缺失值和异常值

缺失值

查看每列的存在nan情况

Train_data.isnull().sum()Test_data.isnull().sum()

排序函数sort_values()

可以将数据集依照某个字段中的数据进行排序,该函数即可根据指定列数据也可根据指定行的

通过以下两句可以很直观的了解哪些列存在 “nan”, 并可以把nan的个数打印。主要的目的在于 nan存在的个数是否真的很大,如果很小一般选择填充,如果使用lgb等树模型可以直接空缺,让树自己去优化,但如果nan存在的过多、可以考虑删掉。

# nan可视化missing = Train_data.isnull().sum()missing = missing[missing > 0]missing.sort_values(inplace=True)missing.plot.bar()

# 可视化缺省值msno.matrix(Train_data.sample(250))msno.bar(Train_data.sample(1000))msno.matrix(Test_data.sample(250))msno.bar(Test_data.sample(1000))

从上文Train_data.info()的统计信息可以发现,除了notRepairedDamage 为object类型其他都为数字。接下来将notRepairedDamage中几个不同的值都进行显示如下:

Train_data['notRepairedDamage'].value_counts()

可以看出‘ - ’也为空缺值,因为很多模型对nan有直接的处理,这里我们先不做处理,先替换成nan。

Train_data['notRepairedDamage'].replace('-', np.nan, inplace=True)Train_data['notRepairedDamage'].value_counts()

Train_data.isnull().sum()

查看全部内容,欢迎访问天池技术圈官方地址:「数据分析」之零基础入门数据挖掘_天池技术圈-阿里云天池

相关文章:

「数据分析」之零基础入门数据挖掘

摘要:对于数据挖掘项目,本文将学习应该从哪些角度分析数据?如何对数据进行整体把握,如何处理异常值与缺失值,从哪些维度进行特征及预测值分析? 探索性数据分析(Exploratory Data Analysis&#…...

【力扣】383.赎金信

题目描述 给你两个字符串:ransomNote 和 magazine ,判断 ransomNote 能不能由 magazine 里面的字符构成。 如果可以,返回 true ;否则返回 false 。 magazine 中的每个字符只能在 ransomNote 中使用一次。 示例 1: …...

【Linux】传输层协议:TCP/UDP

目录 netstat pidof UDP协议 TCP协议 TCP协议段格式 TCP协议的相关机制 确认应答(ACK)机制 超时重传机制 连接管理机制 服务端状态转换 客户端状态转化 流量控制 流量控制常见问题: 滑动窗口 拥塞控制 延迟应答 面向字节流…...

Linux运维_Bash脚本_构建安装Systemd-250

Linux运维_Bash脚本_构建安装Systemd-250 Bash (Bourne Again Shell) 是一个解释器,负责处理 Unix 系统命令行上的命令。它是由 Brian Fox 编写的免费软件,并于 1989 年发布的免费软件,作为 Sh (Bourne Shell) 的替代品。 您可以在 Linux 和…...

中国城市统计年鉴、中国县域统计年鉴、中国财政统计年鉴、中国税务统计年鉴、中国科技统计年鉴、中国卫生统计年鉴​

统计年鉴是指以统计图表和分析说明为主,通过高度密集的统计数据来全面、系统、连续地记录年度经济、社会等各方面发展情况的大型工具书来获取统计数据资料。 统计年鉴是进行各项经济、社会研究的必要前提。而借助于统计年鉴,则是研究者常用的途径。目前国…...

C++:继承:面向对象编程的重要特性

(❁◡❁)(●◡●)╰(*▽*)╯(*/ω\*)(^///^)(❁◡❁)(❁◡❁)(●◡●)╰(*▽*)╯(*/ω\*)(❁◡❁)(●’◡’●)╰(▽)╯(/ω\)(///) C:继承:面向对象编程的重要特性 前言**继承**1.继承的概念及定义1.1继承的概念1.2继…...

oneMKL--FFT 基本使用

oneMKL–FFT 基本使用 本人基于官方文档的摘录与理解 oneMKL--FFT基本使用 oneMKL--FFT 基本使用1. Both FFT and Cluster FFT functions compute an FFT in five steps2 Computing an FFT2.1 缺省值2.2 Fourier Transform Funcions Code Examples2.2.1 One_dimentional In-p…...

软件测试工程师面试汇总Linux篇

Linux 命令篇 cd:切换目录 cd / #进入到系统根目录 cd . #进入到当前目录 cd .. #返回上层目录 cd /tmp #进入指定目录/tmp cd ~ #进入当前用户的家目录 2ls:列出当前目录的所有文件、文件夹(目录)信息; -l 列出目录或…...

【python】使用代理IP爬取猫眼电影专业评分数据

前言 我们为什么需要使用IP代理服务? 在编写爬虫程序的过程中,IP封锁无疑是一个常见且棘手的问题。尽管网络上存在大量的免费IP代理网站,但其质量往往参差不齐,令人堪忧。许多代理IP的延迟过高,严重影响了爬虫的工作…...

C/C++中枚举(enum)和结构体(struct)的异同

一、枚举 enum 1.普通枚举,枚举在C中使用比C使用简单 C语言: enum Color {red,green,blue }; enum Color c red;C语言 enum Color {red,green,blue }; Color c red;C认为这种枚举方式会污染名字,即:枚举使用的名字,在同一个作…...

【数据可视化】使用Python + Gephi,构建中医方剂关系网络图!

代码和示例数据下载 前言 在这篇文章中,我们将会可视化 《七版方剂学》 的药材的关系,我们将使用Python制作节点和边的数据,然后在Gephi中绘制出方剂的网络图。 Gephi是一个专门用于构建网络图的工具,只要你能提供节点和边的数…...

部署prometheus+Grafana可视化仪表盘监控服务

一、部署prometheus及监控仪表盘 简介 Prometheus是开源监控报警系统和时序列数据库(TSDB)。 Prometheus的基本原理是通过HTTP协议周期性抓取被监控组件的状态,任意组件只要提供对应的HTTP接口就可以接入监控,输出被监控组件信息的HTTP接口被叫做expo…...

python中的类与对象

前言 在Python中,类是一种用于创建新类型对象的结构,它允许我们将数据和功能(属性和方法)封装到一个单独的逻辑单元中。类可以被看作是创建对象(实例)的蓝图或模板。类(Class)和对象…...

sentry-cli - error: Failed to load .sentryclirc file from project path

Xcode 15.2 warning sentry-cli - error: Failed to load .sentryclirc file from project path (/Users/zhuhongwei/Desktop/pandabill/.sentryclirc)推荐一下刚上线的 App 熊猫小账本,里面有用到这篇博客讲的内容 熊猫小账本 一个简洁的记账 App,用于…...

回归预测 | Matlab实现SO-BP蛇算法优化BP神经网络多变量回归预测

回归预测 | Matlab实现SO-BP蛇算法优化BP神经网络多变量回归预测 目录 回归预测 | Matlab实现SO-BP蛇算法优化BP神经网络多变量回归预测预测效果基本描述程序设计参考资料 预测效果 基本描述 1.Matlab实现SO-BP蛇算法优化BP神经网络多变量回归预测(完整源码和数据) …...

如何添加 Android Native 系统服务

如何添加 Android Native 系统服务 工作学习过程中,我们可能需要去阅读不同类型的 Native 系统服务,也有可能会自己去完成一个 Native 系统服务。无论哪种情况都需要我们了解基本的 Native 如何去添加。就像我们写 Android App 得先了解一下四大组件才行…...

【力扣】189.轮转数组

题目描述 给定一个整数数组 nums,将数组中的元素向右轮转 k 个位置,其中 k 是非负数。 示例 1: 输入: nums [1,2,3,4,5,6,7], k 3 输出: [5,6,7,1,2,3,4] 解释: 向右轮转 1 步: [7,1,2,3,4,5,6] 向右轮转 2 步: [6,7,1,2,3,4,5] 向右轮转 3 步: [5,6…...

C语言字符函数和字符串函数详解

Hello, 大家好,我是一代,今天给大家带来有关字符函数和字符串函数的有关知识 所属专栏:C语言 创作不易,望得到各位佬们的互三呦 一.字符函数 在C语言中有一些函数是专门为字符设计的,这些函数的使用都需要包含一个头文…...

【CKA模拟题】查询消耗CPU最多的Pod

题干 For this question, please set this context (In exam, diff cluster name) 对于此问题,请设置此上下文(在考试中,diff 集群名称) kubectl config use-context kubernetes-adminkubernetesFind the pod that consumes the …...

网络简略总结

目录 一、三次握手 四次挥手 1、三次握手:为了建立长链接进行交互即建立一个会话,使用http/https协议 2、四次挥手是一个断开连接释放服务器资源的过程 3、如果已经建立了连接,但是客户端突然出现故障了怎么办? 4、谁可以中断连接?客户端还是服务端还是都可以? 5、…...

SpringBoot-17-MyBatis动态SQL标签之常用标签

文章目录 1 代码1.1 实体User.java1.2 接口UserMapper.java1.3 映射UserMapper.xml1.3.1 标签if1.3.2 标签if和where1.3.3 标签choose和when和otherwise1.4 UserController.java2 常用动态SQL标签2.1 标签set2.1.1 UserMapper.java2.1.2 UserMapper.xml2.1.3 UserController.ja…...

Vue记事本应用实现教程

文章目录 1. 项目介绍2. 开发环境准备3. 设计应用界面4. 创建Vue实例和数据模型5. 实现记事本功能5.1 添加新记事项5.2 删除记事项5.3 清空所有记事 6. 添加样式7. 功能扩展:显示创建时间8. 功能扩展:记事项搜索9. 完整代码10. Vue知识点解析10.1 数据绑…...

深入剖析AI大模型:大模型时代的 Prompt 工程全解析

今天聊的内容,我认为是AI开发里面非常重要的内容。它在AI开发里无处不在,当你对 AI 助手说 "用李白的风格写一首关于人工智能的诗",或者让翻译模型 "将这段合同翻译成商务日语" 时,输入的这句话就是 Prompt。…...

【Oracle APEX开发小技巧12】

有如下需求: 有一个问题反馈页面,要实现在apex页面展示能直观看到反馈时间超过7天未处理的数据,方便管理员及时处理反馈。 我的方法:直接将逻辑写在SQL中,这样可以直接在页面展示 完整代码: SELECTSF.FE…...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院挂号小程序

一、开发准备 ​​环境搭建​​: 安装DevEco Studio 3.0或更高版本配置HarmonyOS SDK申请开发者账号 ​​项目创建​​: File > New > Create Project > Application (选择"Empty Ability") 二、核心功能实现 1. 医院科室展示 /…...

python爬虫:Newspaper3k 的详细使用(好用的新闻网站文章抓取和解析的Python库)

更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、Newspaper3k 概述1.1 Newspaper3k 介绍1.2 主要功能1.3 典型应用场景1.4 安装二、基本用法2.2 提取单篇文章的内容2.2 处理多篇文档三、高级选项3.1 自定义配置3.2 分析文章情感四、实战案例4.1 构建新闻摘要聚合器…...

Mac软件卸载指南,简单易懂!

刚和Adobe分手,它却总在Library里给你写"回忆录"?卸载的Final Cut Pro像电子幽灵般阴魂不散?总是会有残留文件,别慌!这份Mac软件卸载指南,将用最硬核的方式教你"数字分手术"&#xff0…...

04-初识css

一、css样式引入 1.1.内部样式 <div style"width: 100px;"></div>1.2.外部样式 1.2.1.外部样式1 <style>.aa {width: 100px;} </style> <div class"aa"></div>1.2.2.外部样式2 <!-- rel内表面引入的是style样…...

uniapp微信小程序视频实时流+pc端预览方案

方案类型技术实现是否免费优点缺点适用场景延迟范围开发复杂度​WebSocket图片帧​定时拍照Base64传输✅ 完全免费无需服务器 纯前端实现高延迟高流量 帧率极低个人demo测试 超低频监控500ms-2s⭐⭐​RTMP推流​TRTC/即构SDK推流❌ 付费方案 &#xff08;部分有免费额度&#x…...

《基于Apache Flink的流处理》笔记

思维导图 1-3 章 4-7章 8-11 章 参考资料 源码&#xff1a; https://github.com/streaming-with-flink 博客 https://flink.apache.org/bloghttps://www.ververica.com/blog 聚会及会议 https://flink-forward.orghttps://www.meetup.com/topics/apache-flink https://n…...