当前位置: 首页 > news >正文

【算法】雪花算法生成分布式 ID

SueWakeup

                                                      个人中心:SueWakeup

                                                      系列专栏:学习Java框架

                                                      个性签名:人生乏味啊,我欲令之光怪陆离

本文封面由 凯楠📷 友情赞助播出!

目录

1. 什么是分布式 ID

2. 分布式 ID 基本要求

3. 数据库主键自增

4. UUID

5. Snowflake 雪花算法

5.1 开源的雪花算法

注:手机端浏览本文章可能会出现 “目录”无法有效展示的情况,请谅解,点击侧栏目录进行跳转   


1. 什么是分布式 ID

在理解分布式 ID 之前请先阅读:【概念】神马是分布式?

分布式 ID 是指在分布式系统中,数据库的自增 ID 不能满足需求,需要在不同的节点之间通过一个唯一 ID 来进行标识。

个人理解:在分布式微服务项目中,多个线程同时对一张表新增数据,且这张表的主键 ID 存在唯一性 


2. 分布式 ID 基本要求

基本要求描述
全局唯一在整个分布式系统中全局唯一,不能出现重复 ID
高性能高可用分布式 ID 的生成速度要快,生成分布式 ID 的服务要保证可用性无限接近于 100%
趋势递增在 MySQL InnoDB 引擎中使用的是聚焦索引,由于多数 RDBMS 使用 B-tree 的数据结构来存储索引数据,在主键的选择上面我们应该尽量使用有序的主键保证写入性能
单调递增保证下一个 ID 一定大于上一个 ID
具体的业务含义生成的 ID 拥有具体的业务含义,可以让定位问题以及开发更透明化
独立部署在分布式系统单独有一个发号器服务,专门用来生成分布式 ID,生成的 ID 的服务和业务相关的服务解耦,但会带来服务之间网络调用消耗增加
信息安全ID 中不能包含敏感信息,如果 ID 是连续的,恶意用户的扒取工作就非常容易做,订单号就更危险了,竞争对手可以获取到我们一天的订单信息,所以一些应用场景下,ID 需要呈现无规则状态

3. 数据库主键自增

通过关系型数据库的主键自增的方式,产生唯一的 ID

优点缺点
  • 实现简单、ID 有序递增、存储空间消耗小
  • 单击模式下并发量不大,性能瓶颈限制在单台 MySQL 的读写性能
  • 数据库服务器不可用时,整个系统瘫痪
  • ID 没有具体业务含义
  • 安全问题
  • 每次获取 ID 都要访问数据库

解决方案:

         在分布式系统中多部署几台及其,每台机器设置不同的初始值,且步长和机器数相等

如:两台机器,设置步长 step 为 2, TicketServer1 的初始值为 1(1,3,5,7,9...)、TicketServer2 的初始值为 2(2,4,6,8,10...)


4. UUID

Universally Unique Identifier(通用唯一标识符)的缩写

UUID 包含 32 个 16 进制数字(8-4-4-4-12)

生成规则:包括 MAC 地址、时间戳、命名空间(Namespace)、随机或伪随机数、时序等元素,基于这些规则生成的 UUID 不会重复

UUID.randomUUID();
优点缺点
  • 性能非常高,本地生成,没有网络消耗
  • 不易于存储:16 字节 128 位,通常以长度为 36 的字符串表示,很多场景不适用
  • 信息不安全:基于 MAC 地址生成 UUID 的算法可能会造成 MAC 地址泄露
  • 不满足 MySQL 主键要求:MySQL 官方有明确的建议主键要尽量越短越好
  • 对 MySQL 索引不利:作为数据库主键,在 InnoDB 引擎下,UUID 的无序性可能会引起数据位置频繁变动,影响性能

5. Snowflake 雪花算法

Snowflake 产生的 ID 由 64位 二进制数字组成,被拆分成 4 个部分:

  • 符号位:标识正负,始终为0
  • 时间戳:单位 ms(毫秒),可以支持 2^41 毫秒(约 69 年)
  • 工作时间 ID:一般前 5 位表示机房 ID,后 5 位表示机器ID,用于区分不同集群/机房的节点,10 位的长度,可以表示 1024 个不同节点。
  • 序列号:序列号为自增值,代表单台机器每毫秒能够产生的最大 ID 数,也就是说单台机器每毫秒最多可以生成 4096 个唯一ID,最大支持 400W 左右的并发量。

5.1 开源的雪花算法

public class SnowFlake {// 机房(数据中心)IDprivate long datacenterId;// 机器 IDprivate long workerId;// 同一时间的序列号private long sequence;// 开始时间戳private long twepoch = 1634393012000L;  // 时间起点,这里设置为"2021-10-17 00:00:00"// 机房ID所占的位数:5个 bitprivate long datacenterIdBits = 5L;// 机器ID所占的位数:5个 bitprivate long workerIdBits = 5L;// 最大机器ID:5 bit 最多只能有31个数字,就是说机器id最多只能是32以内// 最大:11111(2进制) --> 31(10进制)private long maxWorkerId = -1L ^ (-1L << workerIdBits);  // 最大机器ID值// 最大数据中心ID:5 bit 最多只能有31个数字,就是说数据中心id最多只能是32以内private long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);  // 最大数据中心ID值// 同一毫秒内的序列号位数:12 bitprivate long sequenceBits = 12L;// workerId左移位数:12private long workerIdShift = sequenceBits;// datacenterId左移位数:12+5private long datacenterIdShift = sequenceBits + workerIdBits;// timestamp左移位数:12+5+5private long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;// 序列号掩码:4095 (0b111111111111=0xfff=4095)private long sequenceMask = -1L ^ (-1L << sequenceBits);// 上次时间戳private long lastTimestamp = -1L;// 构造函数,传入workerId和datacenterIdpublic SnowFlake(long workerId, long datacenterId) {this(workerId, datacenterId, 0);}// 构造函数,传入workerId、datacenterId和sequencepublic SnowFlake(long workerId, long datacenterId, long sequence) {// 参数校验if (workerId > maxWorkerId || workerId < 0) {throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0", maxWorkerId));}if (datacenterId > maxDatacenterId || datacenterId < 0) {throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0", maxDatacenterId));}// 输出信息System.out.printf("worker starting. timestamp left shift %d, datacenter id bits %d, worker id bits %d, sequence bits %d, workerid %d",timestampLeftShift, datacenterIdBits, workerIdBits, sequenceBits, workerId);// 初始化参数this.workerId = workerId;this.datacenterId = datacenterId;this.sequence = sequence;}// 生成下一个IDpublic synchronized long nextId() {// 获取当前时间戳long timestamp = timeGen();// 检查时间回拨if (timestamp < lastTimestamp) {System.err.printf("clock is moving backwards.  Rejecting requests until %d.", lastTimestamp);throw new RuntimeException(String.format("Clock moved backwards.  Refusing to generate id for %d milliseconds",lastTimestamp - timestamp));}if (lastTimestamp == timestamp) {// 同一毫秒内的序列号自增sequence = (sequence + 1) & sequenceMask;if (sequence == 0) {// 如果同一毫秒内的序列号超出范围,等待下一毫秒timestamp = tilNextMillis(lastTimestamp);}} else {// 不同毫秒内,序列号重置为0sequence = 0;}// 更新上次时间戳lastTimestamp = timestamp;// 生成IDreturn ((timestamp - twepoch) << timestampLeftShift) |(datacenterId << datacenterIdShift) |(workerId << workerIdShift) |sequence;}// 等待下一毫秒private long tilNextMillis(long lastTimestamp) {long timestamp = timeGen();while (timestamp <= lastTimestamp) {timestamp = timeGen();}return timestamp;}// 获取当前时间戳private long timeGen() {return System.currentTimeMillis();}// 主函数,测试生成IDpublic static void main(String[] args) {SnowFlake worker = new SnowFlake(1, 1);for (int i = 0; i < 100; i++) {System.out.println(worker.nextId());}System.out.println();worker = new SnowFlake(1, 2);for (int i = 0; i < 100; i++) {System.out.println(worker.nextId());}}}

测试用例

  SnowFlake flake1 = new SnowFlake(1, 12);SnowFlake flake2 = new SnowFlake(1, 12);Thread t1 = new Thread(){@Overridepublic void run() {for(int i=0;i<10;i++){System.out.println("t1-"+flake1.nextId());}}};Thread t2 =new Thread(){@Overridepublic void run(){for(int i=0;i<10;i++){System.out.println("t2-"+flake2.nextId());}}};t1.start();t2.start();try {t1.join();t2.join();} catch (InterruptedException e) {e.printStackTrace();}

相关文章:

【算法】雪花算法生成分布式 ID

SueWakeup 个人中心&#xff1a;SueWakeup 系列专栏&#xff1a;学习Java框架 个性签名&#xff1a;人生乏味啊&#xff0c;我欲令之光怪陆离 本文封面由 凯楠&#x1f4f7; 友情赞助播出! 目录 1. 什么是分布式 ID 2. 分布式 ID 基本要求 3. 数据库主键自增 4. UUID 5. S…...

FFplay使用滤镜添加字幕到现有视频显示

1.创建字幕文件4k.srt 4k.srt内容: 1 00:00:01.000 --> 00:00:30.000 日照香炉生紫烟2 00:00:31.000 --> 00:00:60.000 遥看瀑布挂前川3 00:01:01.000 --> 00:01:30.000 飞流直下三千尺4 00:01:31.000 --> 00:02:00.000 疑是银河落九天2.通过使用滤镜显示字幕在视…...

【Python + Django】Django模板语法 + 请求和响应

前言&#xff1a; 现在现在&#xff0c;我们要开始将变量的值展现在页面上面啦&#xff01; 要是只会显示静态页面&#xff0c;我们的页面也太难看和死板了&#xff0c; 并且数据库的数据也没法展现在页面上。 但是呢&#xff0c;模板语法学习之后就可以啦&#xff01;&…...

大数据面试总结 四

1、当hadoop集群中某一个节点挂了&#xff0c;内部数据流程是如何进行的&#xff1f; 每一个datanode都会定期向namenode发送heardbeat消息&#xff0c;当一段时间namenode没有接收到某一个datanode的消息&#xff0c;此时namenode就会将该datanode标记为死亡&#xff0c;并不…...

Spring Boot: 使用MongoOperations操作mongodb

一、添加依赖 <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0"xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation"http://maven.apache.org/POM/4…...

PyTorch 深度学习(GPT 重译)(六)

十四、端到端结节分析&#xff0c;以及接下来的步骤 本章内容包括 连接分割和分类模型 为新任务微调网络 将直方图和其他指标类型添加到 TensorBoard 从过拟合到泛化 在过去的几章中&#xff0c;我们已经构建了许多对我们的项目至关重要的系统。我们开始加载数据&#xf…...

MyBatis3源码深度解析(十七)MyBatis缓存(一)一级缓存和二级缓存的实现原理

文章目录 前言第六章 MyBatis缓存6.1 MyBatis缓存实现类6.2 MyBatis一级缓存实现原理6.2.1 一级缓存在查询时的使用6.2.2 一级缓存在更新时的清空 6.3 MyBatis二级缓存的实现原理6.3.1 实现的二级缓存的Executor类型6.3.2 二级缓存在查询时使用6.3.3 二级缓存在更新时清空 前言…...

Go --- Go语言垃圾处理

概念 垃圾回收&#xff08;GC-Garbage Collection&#xff09;暂停程序业务逻辑SWT&#xff08;stop the world&#xff09;程序根节点&#xff1a;程序中被直接或间接引用的对象集合&#xff0c;能通过他们找出所有可以被访问到的对象&#xff0c;所以Go程序的根节点通常包括…...

力扣每日一题30:串联所有单词的子串

题目描述 给定一个字符串 s 和一个字符串数组 words。 words 中所有字符串 长度相同。 s 中的 串联子串 是指一个包含 words 中所有字符串以任意顺序排列连接起来的子串。 例如&#xff0c;如果 words ["ab","cd","ef"]&#xff0c; 那么 &q…...

vim | vim的快捷命令行

快捷进入shell界面 -> :nnoremap <F8> :sh<CR> -> 绑定到了F8 :nnoremap <F8> :sh<CR> 快捷执行 -> :nnoremap <F5> :wa<CR>:!g % -o a.out && ./a.out<CR> -> 绑定到了F5 :nnoremap <F5> :wa<CR>…...

项目管理平台-01-BugClose 入门介绍

拓展阅读 Devops-01-devops 是什么&#xff1f; Devops-02-Jpom 简而轻的低侵入式在线构建、自动部署、日常运维、项目监控软件 代码质量管理 SonarQube-01-入门介绍 项目管理平台-01-jira 入门介绍 缺陷跟踪管理系统&#xff0c;为针对缺陷管理、任务追踪和项目管理的商业…...

web集群-lvs-DR模式基本配置

目录 环境&#xff1a; 一、配置RS 1、安装常见软件 2、配置web服务 3、添加vip 4、arp抑制 二、配置LVS 1、添加vip 2、安装配置工具 3、配置DR 三、测试 四、脚本方式配置 1、LVS-DR 2、LVS-RS 环境&#xff1a; master lvs 192.168.80.161 no…...

基于深度学习的面部情绪识别算法仿真与分析

声明&#xff1a;以下内容均属于本人本科论文内容&#xff0c;禁止盗用&#xff0c;否则将追究相关责任 基于深度学习的面部情绪识别算法仿真与分析 摘要结果分析1、本次设计通过网络爬虫技术获取了七种面部情绪图片&#xff1a;吃惊、恐惧、厌恶、高兴、伤心、愤怒、自然各若…...

C语言经典面试题目(十六)

1、什么是C语言中的指针常量和指针变量&#xff1f;它们有什么区别&#xff1f; 在C语言中&#xff0c;指针常量和指针变量是指针的两种不同类型。它们的区别在于指针的指向和指针本身是否可以被修改。 指针常量&#xff1a;指针指向的内存地址不可变&#xff0c;但指针本身的…...

【C语言】文件操作揭秘:C语言中文件的顺序读写、随机读写、判断文件结束和文件缓冲区详细解析【图文详解】

欢迎来CILMY23的博客喔&#xff0c;本篇为【C语言】文件操作揭秘&#xff1a;C语言中文件的顺序读写、随机读写、判断文件结束和文件缓冲区详细解析【图文详解】&#xff0c;感谢观看&#xff0c;支持的可以给个一键三连&#xff0c;点赞关注收藏。 前言 欢迎来到本篇博客&…...

JAVA八股文面经问题整理第6弹

文章目录 目录 文章目录 提问问题 问题1 问题2 问题3 问题4 问题5 问题6 问题7 问题8 问题9 问题10 问题11 问题12 写在最后 提问问题 介绍一下Linux常⽤命令&#xff0c;例如&#xff1a;Vim快捷键&#xff0c;常⽤查看Log的命令&#xff0c;路径相关&#x…...

pytest相关面试题

pytest是什么&#xff1f;它有什么优点&#xff1f; pytest是一个非常流行的Python测试框架&#xff0c;它具有简洁、易用、高校等优点。他可以帮助测试人员方便地编写和运行测试用例&#xff0c;并且提供了丰富的插件和扩展&#xff0c;支持各种测试需求介绍下pytest常用的库 …...

Keras库搭建神经网络

Keras并非简单的神经网络库&#xff0c;而是一个基于Theano的强大的深度学习库&#xff0c;利用它不仅仅可以搭建普通的神经网络&#xff0c;还可以搭建各种深度学习模型&#xff0c;如自编码器、循环神经网络、递归神经网络、卷积神经网络等。 安装代码&#xff1a; pip ins…...

适配器模式与桥接模式-灵活应对变化的两种设计策略大比拼

​&#x1f308; 个人主页&#xff1a;danci_ &#x1f525; 系列专栏&#xff1a;《设计模式》 &#x1f4aa;&#x1f3fb; 制定明确可量化的目标&#xff0c;坚持默默的做事。 &#x1f680; 转载自&#xff1a;设计模式深度解析&#xff1a;适配器模式与桥接模式-灵活应对变…...

Elasticsearch8搭建及Springboot中集成使用

1.搭建 1.1.下载地址 Elasticsearch&#xff1a;https://www.elastic.co/cn/downloads/elasticsearch Kibana&#xff1a;https://www.elastic.co/cn/downloads/kibana 1.2.具体过程 下载安装包&#xff1a;访问上述链接&#xff0c;下载适合你操作系统的Elasticsearch和Ki…...

UDP(Echoserver)

网络命令 Ping 命令 检测网络是否连通 使用方法: ping -c 次数 网址ping -c 3 www.baidu.comnetstat 命令 netstat 是一个用来查看网络状态的重要工具. 语法&#xff1a;netstat [选项] 功能&#xff1a;查看网络状态 常用选项&#xff1a; n 拒绝显示别名&#…...

VTK如何让部分单位不可见

最近遇到一个需求&#xff0c;需要让一个vtkDataSet中的部分单元不可见&#xff0c;查阅了一些资料大概有以下几种方式 1.通过颜色映射表来进行&#xff0c;是最正规的做法 vtkNew<vtkLookupTable> lut; //值为0不显示&#xff0c;主要是最后一个参数&#xff0c;透明度…...

三体问题详解

从物理学角度&#xff0c;三体问题之所以不稳定&#xff0c;是因为三个天体在万有引力作用下相互作用&#xff0c;形成一个非线性耦合系统。我们可以从牛顿经典力学出发&#xff0c;列出具体的运动方程&#xff0c;并说明为何这个系统本质上是混沌的&#xff0c;无法得到一般解…...

Rust 异步编程

Rust 异步编程 引言 Rust 是一种系统编程语言,以其高性能、安全性以及零成本抽象而著称。在多核处理器成为主流的今天,异步编程成为了一种提高应用性能、优化资源利用的有效手段。本文将深入探讨 Rust 异步编程的核心概念、常用库以及最佳实践。 异步编程基础 什么是异步…...

Angular微前端架构:Module Federation + ngx-build-plus (Webpack)

以下是一个完整的 Angular 微前端示例&#xff0c;其中使用的是 Module Federation 和 npx-build-plus 实现了主应用&#xff08;Shell&#xff09;与子应用&#xff08;Remote&#xff09;的集成。 &#x1f6e0;️ 项目结构 angular-mf/ ├── shell-app/ # 主应用&…...

python报错No module named ‘tensorflow.keras‘

是由于不同版本的tensorflow下的keras所在的路径不同&#xff0c;结合所安装的tensorflow的目录结构修改from语句即可。 原语句&#xff1a; from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后&#xff1a; from tensorflow.python.keras.lay…...

iview框架主题色的应用

1.下载 less要使用3.0.0以下的版本 npm install less2.7.3 npm install less-loader4.0.52./src/config/theme.js文件 module.exports {yellow: {theme-color: #FDCE04},blue: {theme-color: #547CE7} }在sass中使用theme配置的颜色主题&#xff0c;无需引入&#xff0c;直接可…...

第7篇:中间件全链路监控与 SQL 性能分析实践

7.1 章节导读 在构建数据库中间件的过程中&#xff0c;可观测性 和 性能分析 是保障系统稳定性与可维护性的核心能力。 特别是在复杂分布式场景中&#xff0c;必须做到&#xff1a; &#x1f50d; 追踪每一条 SQL 的生命周期&#xff08;从入口到数据库执行&#xff09;&#…...

脑机新手指南(七):OpenBCI_GUI:从环境搭建到数据可视化(上)

一、OpenBCI_GUI 项目概述 &#xff08;一&#xff09;项目背景与目标 OpenBCI 是一个开源的脑电信号采集硬件平台&#xff0c;其配套的 OpenBCI_GUI 则是专为该硬件设计的图形化界面工具。对于研究人员、开发者和学生而言&#xff0c;首次接触 OpenBCI 设备时&#xff0c;往…...

AxureRP-Pro-Beta-Setup_114413.exe (6.0.0.2887)

Name&#xff1a;3ddown Serial&#xff1a;FiCGEezgdGoYILo8U/2MFyCWj0jZoJc/sziRRj2/ENvtEq7w1RH97k5MWctqVHA 注册用户名&#xff1a;Axure 序列号&#xff1a;8t3Yk/zu4cX601/seX6wBZgYRVj/lkC2PICCdO4sFKCCLx8mcCnccoylVb40lP...