探索数据结构:双向链表的灵活优势
✨✨ 欢迎大家来到贝蒂大讲堂✨✨🎈🎈养成好习惯,先赞后看哦~🎈🎈
所属专栏:数据结构与算法
贝蒂的主页:Betty’s blog
1. 前言
前面我们学习了单链表,它解决了顺序表中插入删除需要挪动大量数据的缺点。但同时也有仍需改进的地方,比如说:我们有时候需要寻找某个节点的前一个节点,对于单链表而言只能遍历,这样就可能造成大量时间的浪费。为了解决这个问题,我们就要学习今天的主角——带头双向循环链表。
2. 双向链表的功能
- 初始化顺序表中的数据。
- 对顺序表进行尾插(末尾插入数据)。
- 对顺序表进行头插(开头插入数据)。
- 对顺序表进行头删(开头删除数据)。
- 对顺序表进行尾删(末尾删除数据)。
- 对顺序表就像查找数据。
- 对顺序表数据进行修改。
- 任意位置的删除和插入数据。
- 打印顺序表中的数据。
- 销毁顺序表。
3. 双向链表的定义
双向链表的定义结构体需要包含三个成员,一个成员存储数值,一个成员存储前一个节点的地址,最后一个成员存储下一个节点的地址。
typedef int LTDataType;
typedef struct DoubleList
{struct DoubleList* prev;//指向前一个节点LTDataType data;struct DoubleList* next;//指向下一个节点
}DListNode;
4. 双向链表的功能
4.1 初始化双向链表
在初始化双向链表时,我们需要创建一个头节点,也就是我们常说的哨兵位头节点。
(1) 创建头结点
DListNode* DLNodeCreat(LTDataType x)
{DListNode* newnode = (DListNode*)malloc(sizeof(DListNode));if (newnode == NULL){perror("malloc fail:");return NULL;}newnode->prev = NULL;newnode->next = NULL;newnode->data = x;return newnode;
}
(2) 初始化
初始化将头节点的前后指针都指向自己,并将数值至为-1。
DListNode* InitDList()
{DListNode* phead = DLNodeCreat(-1);phead->prev = phead;phead->next = phead;return phead;
}
(3) 复杂度分析
- 时间复杂度:没有其他额外的时间消耗,时间复杂度为O(1)。
- 空间复杂度:固定创造一个节点,空间复杂度为O(1)。
4.2 双向链表尾插
因为我们实现的双向链表存在头节点,所以我们不需要像实现单链表一样先判断链表是否为空。
(1) 代码实现
void DListPushBack(DListNode* ptr, LTDataType x)
{assert(ptr);DListNode* tail = ptr->prev;DListNode* newnode = DLNodeCreat(x);tail->next = newnode;newnode->prev = tail;ptr->prev = newnode;newnode->next = ptr;
}
(2) 复杂度分析
- 时间复杂度:没有其他额外的时间消耗,时间复杂度为O(1)。
- 空间复杂度:固定创造一个节点,空间复杂度为O(1)。
4.3 双向链表头插
因为带头双向循环链表的特性,即使只有头节点进行头插,代码实现也是相同的。
(1) 代码实现
void DListPushFront(DListNode* ptr, LTDataType x)
{assert(ptr);DListNode* next = ptr->next;DListNode* newnode = DLNodeCreat(x);ptr->next = newnode;newnode->prev =ptr;newnode->next = next;next->prev = newnode;
}
(2) 复杂度分析
- 时间复杂度:没有其他额外的时间消耗,时间复杂度为O(1)。
- 空间复杂度:固定创造一个节点,空间复杂度为O(1)。
4.4 双向链表尾删
有了循环找尾节点也十分容易,双向链表尾删自然并不困难。但是需要防止删除头节点。
(1) 代码实现
void DListPopBack(DListNode* ptr)
{assert(ptr);assert(ptr->next != ptr);//放置删除头节点DListNode* tail = ptr->prev;DListNode* tailprev = tail->prev;free(tail);tail == NULL;tailprev->next = ptr;ptr->prev = tailprev;
}
(2) 复杂度分析
- 时间复杂度:没有其他额外的时间消耗,时间复杂度为O(1)。
- 空间复杂度:没有额外的空间消耗,空间复杂度为O(1)。
4.5 双向链表头删
头删与尾删一样,都需要防止删除头节点。
(1) 代码实现
void DListPopFront(DListNode* ptr)
{assert(ptr);assert(ptr->next != ptr);DListNode* phead = ptr->next;DListNode* pheadnext = phead->next;free(phead);ptr->next = pheadnext;pheadnext->prev = ptr;
}
(2) 复杂度分析
- 时间复杂度:没有其他额外的时间消耗,时间复杂度为O(1)。
- 空间复杂度:没有额外的空间消耗,空间复杂度为O(1)。
4.6 双向链表查找
和单链表一样,我们也可以对双向链表进行查找。如果找到就返回该节点的地址,否则返回NULL。
(1) 代码实现
DListNode* DListFind(DListNode* ptr, LTDataType x)
{assert(ptr);DListNode* cur = ptr->next;while (cur != ptr){if (cur->data == x){return cur;}cur = cur->next;}return NULL;
}
(2) 复杂度分析
- 时间复杂度:可能需要遍历整个链表,时间复杂度为O(N)。
- 空间复杂度:没有额外的空间消耗,空间复杂度为O(1)。
4.7 修改双向链表
我们可以结合双向链表的查找,对双向链表进行修改。
(1) 代码实现
void DListModify(DListNode* ptr, DListNode* pos, LTDataType x)
{assert(ptr);assert(ptr != pos);//防止对头节点操作DListNode* cur = ptr->next;while (cur != ptr){if (cur == pos){cur->data = x;}cur = cur->next;}
}
(2) 复杂度分析
- 时间复杂度:可能需要遍历整个链表,时间复杂度为O(N)。
- 空间复杂度:没有额外的空间消耗,空间复杂度为O(1)。
4.8 双向链表指定插入数据
随机插入数据可以分为:向前插入与向后插入。
(1) 向前插入
void DListInsertF(DListNode* ptr, DListNode* pos, LTDataType x)
{assert(ptr);DListNode* newnode = DLNodeCreat(x);DListNode* prev = pos->prev;newnode->prev = prev;newnode->next = pos;prev->next = newnode;pos->prev = newnode;
}
(2) 向后插入
void DListInsertB(DListNode* ptr, DListNode* pos, LTDataType x)
{assert(ptr);DListNode* newnode = DLNodeCreat(x);DListNode* next = pos->next;newnode->prev = pos;newnode->next = next;next->prev = newnode;pos->next = newnode;
}
(3) 复杂度分析
- 时间复杂度:没有其他额外的时间消耗,时间复杂度为O(1)。
- 空间复杂度:没有额外的空间消耗,空间复杂度为O(1)。
4.9 指定位置删除数据
任意删除也需要放置删除头节点,并且因为其特点只需要一个参数就能完成该操作。
(1) 代码实现
void DListErase(DListNode* pos)
{assert(pos);assert(pos != pos->next);pos->prev->next = pos -> next;pos->next->prev = pos->prev;free(pos);pos = NULL;
}
(2) 复杂度分析
- 时间复杂度:没有其他额外的时间消耗,时间复杂度为O(1)。
- 空间复杂度:没有额外的空间消耗,空间复杂度为O(1)。
4.10 打印双向链表
打印双向链表只需将循环之前的数据全部打印即可。
(1) 代码实现
void DLTPrint(DListNode* ptr)
{assert(ptr);printf("guard");DListNode* cur = ptr->next;while (cur != ptr){printf("<==>%d", cur->data);cur = cur->next;}printf("\n");
}
(2) 复杂度分析
- 时间复杂度:没有其他额外的时间消耗,时间复杂度为O(1)。
- 空间复杂度:没有额外的空间消耗,空间复杂度为O(1)。
4.11 销毁双向链表
(1) 代码实现
void DListDestroy(DListNode* ptr)
{assert(ptr);DListNode* cur = ptr->next;while (cur != ptr){DListNode* next = cur->next;free(cur);cur = next;}free(ptr);
}
(2) 复杂度分析
- 时间复杂度:没有其他额外的时间消耗,时间复杂度为O(1)。
- 空间复杂度:没有额外的空间消耗,空间复杂度为O(1)。
5. 完整代码
5.1 DList.h
#include<stdio.h>
#include<stdlib.h>
#include<assert.h>
typedef int LTDataType;
typedef struct DoubleList
{struct DoubleList* prev;//指向前一个节点LTDataType data;struct DoubleList* next;//指向下一个节点
}DListNode;
DListNode* InitDList();//初始化
void DListPushBack(DListNode* ptr, LTDataType x);//尾插
void DLTPrint(DListNode* ptr);//打印
void DListPushFront(DListNode* ptr, LTDataType x);//头插
void DListPopBack(DListNode* ptr);//尾删
void DListPopFront(DListNode* ptr);//头删
DListNode*DListFind(DListNode* ptr, LTDataType x);//查找
void DListModify(DListNode* ptr, DListNode* pos);//修改
void DListInsertF(DListNode* ptr, DListNode* pos, LTDataType x);//任意位置之前插入
void DListInsertB(DListNode* ptr, DListNode* pos, LTDataType x);//任意位置之后插入
void DListErase(DListNode* pos);//任意位置删除
void DListDestroy(DListNode* ptr);//销毁双向链表
5.2 DList.c
#include"DoubleList.h"
DListNode* DLNodeCreat(LTDataType x)
{DListNode* newnode = (DListNode*)malloc(sizeof(DListNode));if (newnode == NULL){perror("malloc fail:");return NULL;}newnode->prev = NULL;newnode->next = NULL;newnode->data = x;return newnode;
}
DListNode* InitDList()
{DListNode* phead = DLNodeCreat(-1);phead->prev = phead;phead->next = phead;return phead;
}
void DListPushBack(DListNode* ptr, LTDataType x)
{assert(ptr);DListNode* tail = ptr->prev;DListNode* newnode = DLNodeCreat(x);tail->next = newnode;newnode->prev = tail;ptr->prev = newnode;newnode->next = ptr;
}
void DListPushFront(DListNode* ptr, LTDataType x)
{assert(ptr);DListNode* next = ptr->next;DListNode* newnode = DLNodeCreat(x);ptr->next = newnode;newnode->prev =ptr;newnode->next = next;next->prev = newnode;
}
void DListPopBack(DListNode* ptr)
{assert(ptr);assert(ptr->next != ptr);//放置删除头节点DListNode* tail = ptr->prev;DListNode* tailprev = tail->prev;free(tail);tail == NULL;tailprev->next = ptr;ptr->prev = tailprev;
}
void DListPopFront(DListNode* ptr)
{assert(ptr);assert(ptr->next != ptr);DListNode* phead = ptr->next;DListNode* pheadnext = phead->next;free(phead);ptr->next = pheadnext;pheadnext->prev = ptr;
}
DListNode* DListFind(DListNode* ptr, LTDataType x)
{assert(ptr);DListNode* cur = ptr->next;while (cur != ptr){if (cur->data == x){return cur;}cur = cur->next;}return NULL;
}
void DListModify(DListNode* ptr, DListNode* pos, LTDataType x)
{assert(ptr);assert(ptr != pos);//防止对头节点操作DListNode* cur = ptr->next;while (cur != ptr){if (cur == pos){cur->data = x;}cur = cur->next;}
}
void DListInsertF(DListNode* ptr, DListNode* pos, LTDataType x)
{assert(ptr);DListNode* newnode = DLNodeCreat(x);DListNode* prev = pos->prev;newnode->prev = prev;newnode->next = pos;prev->next = newnode;pos->prev = newnode;
}
void DListInsertB(DListNode* ptr, DListNode* pos, LTDataType x)
{assert(ptr);DListNode* newnode = DLNodeCreat(x);DListNode* next = pos->next;newnode->prev = pos;newnode->next = next;next->prev = newnode;pos->next = newnode;
}
void DListErase(DListNode* pos)
{assert(pos);assert(pos != pos->next);pos->prev->next = pos -> next;pos->next->prev = pos->prev;free(pos);pos = NULL;
}
void DLTPrint(DListNode* ptr)
{assert(ptr);printf("guard");DListNode* cur = ptr->next;while (cur != ptr){printf("<==>%d", cur->data);cur = cur->next;}printf("\n");
}
void DListDestroy(DListNode* ptr)
{assert(ptr);DListNode* cur = ptr->next;while (cur != ptr){DListNode* next = cur->next;free(cur);cur = next;}free(ptr);
}
相关文章:

探索数据结构:双向链表的灵活优势
✨✨ 欢迎大家来到贝蒂大讲堂✨✨ 🎈🎈养成好习惯,先赞后看哦~🎈🎈 所属专栏:数据结构与算法 贝蒂的主页:Betty’s blog 1. 前言 前面我们学习了单链表,它解决了顺序表中插入删除需…...

记录一次服务器内存使用率过高达到90%告警问题排查。
目录 一、前言二、问题排查处理三、 结尾 👩🏽💻个人主页:阿木木AEcru 🔥 系列专栏:Docker容器化部署系列 💹每一次技术突破,都是对自我能力的挑战和超越。 一、前言 一大早就有一…...

基于react native的自定义轮播图
基于react native的自定义轮播图 效果示例图示例代码 效果示例图 示例代码 import React, {useEffect, useRef, useState} from react; import {Animated,PanResponder,StyleSheet,Text,View,Dimensions, } from react-native; import {pxToPd} from ../../common/js/device;c…...
Jetson入坑记实
关于虚拟环境python与系统自带python目录下dist-packages与site-packages dist-packages:系统自带的python site-packages:自己安装的python 详细:dist-packages与site-packages_dist-packages和site-packages-CSDN博客 rtsp获取视频流(没…...

算法系列--递归
一.如何理解递归 递归对于初学者来说是一个非常抽象的概念,笔者在第一次学习时也是迷迷糊糊的(二叉树遍历),递归的代码看起来非常的简洁,优美,但是如何想出来递归的思路或者为什么能用递归这是初学者很难分析出来的 笔者在学习的过程中通过刷题,也总结出自己的一些经验,总结来…...

【JS】替换文本为emjio表情
最终效果展示 T1 T2 T3 T4 需求 把评论你好帅啊啊啊[开心][开心],[开心] 替换为图片 思路 正则match提取[开心]到一个数组数组去重创建img标签img标签转文本. 。例:(el.outerHTML),将el元素转文本字符串replaceAll…...
Solr完结版
Solr是基于Apache Lucene构建的用于搜索和分析的开源解决方案。提供可拓展索引、搜索功能、高亮显示和文字解析功能。本质是一个java web项目,内嵌Jetty服务器,安装方便。 请求Solr中的控制器,处理完数据后把结果相应给客户端 正向索引&#…...

外包干了5天,技术退步明显。。。。
说一下自己的情况,本科生,19年通过校招进入广州某软件公司,干了接近4年的功能测试,今年年初,感觉自己不能够在这样下去了,长时间呆在一个舒适的环境会让一个人堕落!而我已经在一个企业干了四年的功能测试&a…...

Cronos zkEVM 基于 Covalent Network(CQT)数据可用性 API,推动其 Layer2 DeFi 生态更好地发展
在一项旨在显著改善 DeFi 生态的战略举措中,Cronos 与 Covalent Network(CQT)携手合作,以期待 Cronos zkEVM 的推出。这一整合,预计将进一步降低以太坊生态系统的交易成本、提升交易速度,并带来更好的交易体…...

基于SpringBoot的高校办公室行政事务管理系统
采用技术 基于SpringBoot的高校办公室行政事务管理系统的设计与实现~ 开发语言:Java 数据库:MySQL 技术:SpringBootMyBatis 工具:IDEA/Ecilpse、Navicat、Maven 页面展示效果 功能清单 教师信息管理 办公室管理 办公物资管…...
Linux系统及操作 (04)
Linux系统及操作 (03) RPM 软件包 网络下载对应软件包光盘镜像文件,具备软件包 Windows 系统软件包的管理 可以指定安装位置安装是集中安装到一个目录Linux 系统 与 Windows 系统相反。 常见的软件包(生态)类型 电脑入侵99%都是通过软件…...
粒子群算法 - 目标函数最优解计算
粒子群算法概念 粒子群算法 (particle swarm optimization,PSO) 由 Kennedy 和 Eberhart 在 1995 年提出,该算法模拟鸟群觅食的方法进行寻找最优解。基本思想:人们发现,鸟群觅食的方向由两个因素决定。第一个是自己当初飞过离食物…...

关于MySQL数据库的学习3
目录 前言: 1.DQL(数据查询语言): 1..1基本查询: 1.2条件查询: 1.3排序查询: 1.3.1使用ORDER BY子句对查询结果进行排序。 1.3.2可以按一个或多个列进行排序,并指定排序方向(升序ASC或降序DESC&#…...
笔试题——得物春招实习
开幕式排练 题目描述 导演在组织进行大运会开幕式的排练,其中一个环节是需要参演人员围成一个环形。演出人员站成了一圈,出于美观度的考虑,导演不希望某一个演员身边的其他人比他低太多或者高太多。 现在给出n个参演人员的身高,问…...

动手做简易版俄罗斯方块
导读:让我们了解如何处理形状的旋转、行的消除以及游戏结束条件等控制因素。 目录 准备工作 游戏设计概述 构建游戏窗口 游戏方块设计 游戏板面设计 游戏控制与逻辑 行消除和计分 判断游戏结束 界面美化和增强体验 看看游戏效果 准备工作 在开始编码之前…...

【极简无废话】open3d可视化torch、numpy点云
建议直接看文档,很多都代码老了,注意把代码版本调整到你使用的open3d的版本: https://www.open3d.org/docs/release/tutorial/visualization/visualization.html 请注意open3d应该已经不支持centos了! 从其他格式转换成open3d…...

C语言经典算法-6
文章目录 其他经典例题跳转链接31.数字拆解32.得分排行33.选择、插入、气泡排序34.Shell 排序法 - 改良的插入排序35.Shaker 排序法 - 改良的气泡排序 其他经典例题跳转链接 C语言经典算法-1 1.汉若塔 2. 费式数列 3. 巴斯卡三角形 4. 三色棋 5. 老鼠走迷官(一&…...

【计算机考研】杭电 vs 浙工大 怎么选?
想求稳上岸的话,其他几所学校也可以考虑,以留在本地工作的角度考虑,这几所学校都能满足你的需求。 如果之后想谋求一份好工作,肯定优先杭电是比较稳的,当然复习的时候也得加把劲。 这个也可以酌情考虑,报…...
激活函数
优秀的激活函数: 非线性:激活函数非线性时,多层神经网络可逼近所有函数 可微性:梯度下降更新参数 单调性:当激活函数是单调的,能保证单层网络的损失函数是凸函数 近似恒等性:当参数初始化为…...
使用Jackson进行 JSON 序列化和反序列化
在Spring应用程序中,您可以通过Maven添加Jackson依赖,并创建一个工具类来封装对象的序列化和反序列化方法。以下是详细步骤: 1. 引入 Jackson 依赖 如果使用 Maven,您可以在 pom.xml 文件中添加以下依赖: <depend…...
rknn优化教程(二)
文章目录 1. 前述2. 三方库的封装2.1 xrepo中的库2.2 xrepo之外的库2.2.1 opencv2.2.2 rknnrt2.2.3 spdlog 3. rknn_engine库 1. 前述 OK,开始写第二篇的内容了。这篇博客主要能写一下: 如何给一些三方库按照xmake方式进行封装,供调用如何按…...

【JavaEE】-- HTTP
1. HTTP是什么? HTTP(全称为"超文本传输协议")是一种应用非常广泛的应用层协议,HTTP是基于TCP协议的一种应用层协议。 应用层协议:是计算机网络协议栈中最高层的协议,它定义了运行在不同主机上…...

练习(含atoi的模拟实现,自定义类型等练习)
一、结构体大小的计算及位段 (结构体大小计算及位段 详解请看:自定义类型:结构体进阶-CSDN博客) 1.在32位系统环境,编译选项为4字节对齐,那么sizeof(A)和sizeof(B)是多少? #pragma pack(4)st…...

PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建
制造业采购供应链管理是企业运营的核心环节,供应链协同管理在供应链上下游企业之间建立紧密的合作关系,通过信息共享、资源整合、业务协同等方式,实现供应链的全面管理和优化,提高供应链的效率和透明度,降低供应链的成…...
服务器硬防的应用场景都有哪些?
服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式,避免服务器受到各种恶意攻击和网络威胁,那么,服务器硬防通常都会应用在哪些场景当中呢? 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...

最新SpringBoot+SpringCloud+Nacos微服务框架分享
文章目录 前言一、服务规划二、架构核心1.cloud的pom2.gateway的异常handler3.gateway的filter4、admin的pom5、admin的登录核心 三、code-helper分享总结 前言 最近有个活蛮赶的,根据Excel列的需求预估的工时直接打骨折,不要问我为什么,主要…...
【算法训练营Day07】字符串part1
文章目录 反转字符串反转字符串II替换数字 反转字符串 题目链接:344. 反转字符串 双指针法,两个指针的元素直接调转即可 class Solution {public void reverseString(char[] s) {int head 0;int end s.length - 1;while(head < end) {char temp …...

【数据分析】R版IntelliGenes用于生物标志物发现的可解释机器学习
禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者! 文章目录 介绍流程步骤1. 输入数据2. 特征选择3. 模型训练4. I-Genes 评分计算5. 输出结果 IntelliGenesR 安装包1. 特征选择2. 模型训练和评估3. I-Genes 评分计…...

三分算法与DeepSeek辅助证明是单峰函数
前置 单峰函数有唯一的最大值,最大值左侧的数值严格单调递增,最大值右侧的数值严格单调递减。 单谷函数有唯一的最小值,最小值左侧的数值严格单调递减,最小值右侧的数值严格单调递增。 三分的本质 三分和二分一样都是通过不断缩…...

【MATLAB代码】基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),附源代码|订阅专栏后可直接查看
文章所述的代码实现了基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),针对传感器观测数据中存在的脉冲型异常噪声问题,通过非线性加权机制提升滤波器的抗干扰能力。代码通过对比传统KF与MCC-KF在含异常值场景下的表现,验证了后者在状态估计鲁棒性方面的显著优…...