当前位置: 首页 > news >正文

【LeetCode】--- 动态规划 集训(一)

目录

  • 一、1137. 第 N 个泰波那契数
    • 1.1 题目解析
    • 1.2 状态转移方程
    • 1.3 解题代码
  • 二、面试题 08.01. 三步问题
    • 2.1 题目解析
    • 2.2 状态转移方程
    • 2.3 解题代码
  • 三、746. 使用最小花费爬楼梯
    • 3.1 题目解析
    • 3.2 状态转移方程
    • 3.3 解题代码

一、1137. 第 N 个泰波那契数

题目地址: 1137. 第 N 个泰波那契数


泰波那契序列 Tn定义如下:
T0 = 0, T1 = 1, T2 = 1, 且在 n >= 0的条件下 Tn+3 = Tn + Tn+1 + Tn+2
给你整数 n,请返回第 n个泰波那契数 Tn的值。

示例 1:
输入:n = 4
输出:4
解释:
T_3 = 0 + 1 + 1 = 2
T_4 = 1 + 1 + 2 = 4
示例 2:
输入:n = 25
输出:1389537

1.1 题目解析

因为要求的是第n个泰波那契序列,所以我们可以创建一个长度为 n 的dp表,用来表示第i位置的泰波那契序列(即:dp[i]表示:第 i 个泰波那契序列的值)。

接下来便是初始化,因为 dp[i]位置是前三个数的和,所以为了后序填表时不越界,要先初始化前三个数。题目中已给出前三个值,完成初始化即可(dp[0] = 0; dp[1] = dp[2] = 1;)。

填表顺序是:从左到右,依次填表。从下标为 3 的位置开始填表。

返回值为:dp[n],即第 n 个位置的泰波那契序列的值。还需要注意的小细节是,当序列长度不足 3 时,要单独判断返回值。

1.2 状态转移方程

依据题目要求(已给出):dp[i] = dp[i - 1] + dp[i - 2] + dp[i - 3];

1.3 解题代码

class Solution 
{
public:int tribonacci(int n) {//1. 创建dp表//2. 初始化//3. 填表//4. 返回结束if(n == 0) return 0;if(n == 1 || n == 2) return 1;vector<int> dp(n + 1);dp[0] = 0, dp[1] = dp[2] = 1;for(int i = 3; i <= n ; ++i)dp[i] = dp[i - 1] + dp[i - 2] + dp[i - 3];return dp[n];}
};

二、面试题 08.01. 三步问题

题目地址: 面试题 08.01. 三步问题


三步问题。有个小孩正在上楼梯,楼梯有n阶台阶,小孩一次可以上1阶、2阶或3阶。实现一种方法,计算小孩有多少种上楼梯的方式。结果可能很大,你需要对结果模1000000007。

示例1:
输入:n = 3
输出:4
说明: 有四种走法
示例2:
输入:n = 5
输出:13

2.1 题目解析

为了求到第 n 级台阶的方法数,可以定义一个长度为 n+1 的dp表,dp[i]表示:到 i 位置时,一共有多少种方法。

状态转移方程的确立,因为小孩可以一次走一级,两级或三级台阶,所以他可以从第 n-1, n-2 或 n-3 级台阶上到第 n 级台阶。所以到第 n 级台阶的总方法数,是到上述三种台阶的方法数总和。(以 i 位置的状态,最近的一步,来划分问题

在这里插入图片描述

接下来便是初始化,为了在填 dp 表时不越界(即取dp[i - 3]时),所以需要初始化前三个状态表的值(dp[1] = 1, dp[2] = 2, dp[3] = 4;)。还可以再多开一个位置,使台阶序号和 dp 表对应。

填表顺序:从左到右依次填表,从下标为 4 的位置开始填。

返回值:返回 dp[n],即到第 n 级台阶的方法数。n <= 3 时要单独判断,因为状态表从下标为 4 位置开始判断(利用最近的前三个状态)

2.2 状态转移方程

依据题目要求:dp[i] = dp[i - 1] + dp[i - 2] + dp[i - 3];。还需要注意的是为了防止越界,顺应题目要求,要对结果模1000000007。那么便可写成如下格式:dp[i] = ((dp[i - 1] + dp[i - 2]) % num + dp[i - 3]) % num;

2.3 解题代码

class Solution 
{
public:int waysToStep(int n) {//1. 创建dp表//2. 初始化//3. 填表//4. 返回结束if(n == 1 || n == 2) return n;if(n == 3) return 4;vector<int> dp(n + 1);dp[1] = 1, dp[2] = 2, dp[3] = 4;int num = 1e9 + 7;for(int i = 4; i <= n; ++i)dp[i] = ((dp[i - 1] + dp[i - 2]) % num + dp[i - 3]) % num;return dp[n];}
};

三、746. 使用最小花费爬楼梯

题目地址: 746. 使用最小花费爬楼梯


给你一个整数数组 cost ,其中 cost[i] 是从楼梯第 i 个台阶向上爬需要支付的费用。一旦你支付此费用,即可选择向上爬一个或者两个台阶。
你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。
请你计算并返回达到楼梯顶部的最低花费。

示例 1:
输入:cost = [10,15,20]
输出:15
解释:你将从下标为 1 的台阶开始。

  • 支付 15 ,向上爬两个台阶,到达楼梯顶部。

总花费为 15 。

示例 2:
输入:cost = [1,100,1,1,1,100,1,1,100,1]
输出:6
解释:你将从下标为 0 的台阶开始。

  • 支付 1 ,向上爬两个台阶,到达下标为 2 的台阶。
  • 支付 1 ,向上爬两个台阶,到达下标为 4 的台阶。
  • 支付 1 ,向上爬两个台阶,到达下标为 6 的台阶。
  • 支付 1 ,向上爬一个台阶,到达下标为 7 的台阶。
  • 支付 1 ,向上爬两个台阶,到达下标为 9 的台阶。
  • 支付 1 ,向上爬一个台阶,到达楼梯顶部。

总花费为 6 。

3.1 题目解析

此题所求的是达到楼梯顶部的最低花费,那么我们便可定义一个长度为 n+1 的 dp 状态表。多开一个是因为,此处的楼梯顶部,不是数组cost.size(),而是最后一个位置的下一个。那么我们便可使用,dp[i]来表示:到达 i 位置时,最小花费。

状态转移方程的确立,可以根据最小花费,因为一次可以向上爬一个或两个台阶。那么到达第 i 级台阶的最小花费,便可用最近的状态推导 dp[i]即:1. 先到达 i - 1位置,然后支付cost[i - 1],走一步(dp[i - 1] + cost[i - 1]); 2. 先到达 i - 2位置,然后支付cost[i - 2],走两步(dp[i - 2] + cost[i - 2])。然后求两者最小值,这便是到达第 i 级台阶的最小费用。

在这里插入图片描述

初始化:为了后序填表不越界,且初始化的值不影响填表,所以可将前两个状态初始化为0(dp[0] = dp[1] = 0;)。

填表顺序:从左到右,依次填表。从下标为 2 的位置开始填。

返回值dp[n]即是到达楼梯顶部的最低费用。

3.2 状态转移方程

依据题目要求:dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i -2]);

3.3 解题代码

class Solution 
{
public:int minCostClimbingStairs(vector<int>& cost) {//1. 创建dp表//2. 初始化//3. 填表//4. 返回结束int n = cost.size();vector<int> dp(n + 1);dp[0] = 0, dp[1] = 0;for(int i = 2; i <= n; ++i)dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);return dp[n];}
};

相关文章:

【LeetCode】--- 动态规划 集训(一)

目录 一、1137. 第 N 个泰波那契数1.1 题目解析1.2 状态转移方程1.3 解题代码 二、面试题 08.01. 三步问题2.1 题目解析2.2 状态转移方程2.3 解题代码 三、746. 使用最小花费爬楼梯3.1 题目解析3.2 状态转移方程3.3 解题代码 一、1137. 第 N 个泰波那契数 题目地址&#xff1a…...

【数据结构与算法】(18):树形选择排序:按照锦标赛的思想进行排序

&#x1f921;博客主页&#xff1a;Code_文晓 &#x1f970;本文专栏&#xff1a;数据结构与算法 &#x1f63b;欢迎关注&#xff1a;感谢大家的点赞评论关注&#xff0c;祝您学有所成&#xff01; ✨✨&#x1f49c;&#x1f49b;想要学习更多数据结构与算法点击专栏链接查看&…...

统计单词数

统计单词数 题目描述 一般的文本编辑器都有查找单词的功能&#xff0c;该功能可以快速定位特定单词在文章中的位置&#xff0c;有的还能统计出特定单词在文章中出现的次数。 现在&#xff0c;请你编程实现这一功能&#xff0c;具体要求是&#xff1a;给定一个单词&#xff0…...

c++pair的用法

pair简单来说就是可以存储两种类型数据的一个类&#xff0c;其内部是使用模板实现的&#xff0c;所以可以指定其内部的类型。 pair在#include <utility> pair的构造 pair<int, string> p1({ 1,"张三" });pair<int, string> p2;pair<int, str…...

石油炼化5G智能制造工厂数字孪生可视化平台,推进行业数字化转型

石油炼化5G智能制造工厂数字孪生可视化平台&#xff0c;推进行业数字化转型。在石油炼化行业&#xff0c;5G智能制造工厂数字孪生可视化平台的出现&#xff0c;为行业的数字化转型注入了新的活力。石油炼化行业作为传统工业的重要领域&#xff0c;面临着资源紧张、环境压力、安…...

IP代理技术革新:探索数据采集的新路径

引言&#xff1a; 随着全球化进程不断加深&#xff0c;网络数据采集在企业决策和市场分析中扮演着愈发重要的角色。然而&#xff0c;地域限制和IP封锁等问题常常给数据采集工作带来了巨大挑战。亿牛云代理服务凭借其强大的网络覆盖和真实住宅IP资源&#xff0c;成为解决这些问…...

流畅的 Python 第二版(GPT 重译)(一)

前言 计划是这样的&#xff1a;当有人使用你不理解的特性时&#xff0c;直接开枪打死他们。这比学习新东西要容易得多&#xff0c;不久之后&#xff0c;活下来的程序员只会用一个容易理解的、微小的 Python 0.9.6 子集来编写代码 。 Tim Peters&#xff0c;传奇的核心开发者&am…...

Vue+jquery+jquery.maphilight实现图片热区高亮以及点击效果

//鼠标悬浮效果 mounted() {this.setCurrentTask(0); //对于id为mapAll的热区图&#xff0c;设置鼠标放置在上面有一个颜色 fillColor填充颜色 strokeColor边框颜色 strokeWidth边框宽度 fillOpacity 是设置热区填充颜色的不透明度的属性。 alwaysOn:true 保持常量$(function(…...

靠谱!朋友圈一键转发和自动转发好友朋友圈

微信朋友圈在生活和工作中扮演着重要的社交和信息传播角色。尤其是对于一些企业来说&#xff0c;朋友圈是不可或缺的推广渠道。 今天就给大家分享一个能够实现一键转发和自动转发好友朋友圈的工具——微信管理系统&#xff0c;让大家都能有效的管理朋友圈。 1、定时发圈&…...

线性顺序表算法库

list.cpp 具体函数实现 #include <stdio.h> #include "list.h" #include <malloc.h>/************************************************** ①函数名: CreateList 功 能: 用数组构建顺序表 参 数: ①SqList *&L:传入的线性表 ②ElemType a[]:使用…...

java分割等和子集(力扣Leetcode416)

分割等和子集 力扣原题链接 给你一个只包含正整数的非空数组nums。请你判断是否可以将这个数组分割成两个子集&#xff0c;使得两个子集的元素和相等。 示例 1&#xff1a; 输入&#xff1a;nums [1,5,11,5] 输出&#xff1a;true 解释&#xff1a;数组可以分割成 [1, 5, 5] …...

383. 赎金信

给你两个字符串&#xff1a;ransomNote 和 magazine &#xff0c;判断 ransomNote 能不能由 magazine 里面的字符构成。 如果可以&#xff0c;返回 true &#xff1b;否则返回 false 。 magazine 中的每个字符只能在 ransomNote 中使用一次。 func canConstruct(ransomNote …...

【二】【单片机】有关独立按键的实验

自定义延时函数Delay 分别用Delay.c文件存储Delay函数。用Delay.h声明Delay函数。每次将这两个文件复制到工程中&#xff0c;直接使用。 //Delay.c void Delay(unsigned int xms) //11.0592MHz {while(xms--){unsigned char i, j;i 2;j 199;do{while (--j);}…...

AJAX踩坑指南(知识点补充)

JWT JSON Web Token是目前最为流行的跨域认证解决方案 如何获取&#xff1a;在使用JWT身份验证中&#xff0c;当用户使用其凭据成功登录时&#xff0c;将返回JSON Web Token(令牌&#xff09; Token本质就是一个包含了信息的字符串 如何获取Token:登录成功之后&#xff0c;服务…...

备战蓝桥杯Day29 - 拼接最大数字问题

问题描述 有n个非负整数&#xff0c;将其按照字符串拼接的方式拼接为一个整数如何拼接可以使得得到的整数最大? 例: 32,94,128,1286,6,71可以拼接除的最大整数为 94716321286128。 问题思路 1.比较两个字符串的第一个数字&#xff0c;数值大的在前面&#xff0c;数值小的在…...

基于springboot的mysql实现读写分离

前言: 首先思考一个问题:在高并发的场景中,关于数据库都有哪些优化的手段&#xff1f;常用的有以下的实现方法:读写分离、加缓存、主从架构集群、分库分表等&#xff0c;在互联网应用中,大部分都是读多写少的场景,设置两个库,主库和读库,主库的职能是负责写,从库主要是负责读…...

Python爬虫之Scrapy框架系列(24)——分布式爬虫scrapy_redis完整实战【XXTop250完整爬取】

目录&#xff1a; 每篇前言&#xff1a;1.使用分布式爬取豆瓣电影信息&#xff08;1&#xff09;settings.py文件中的配置&#xff1a;&#xff08;2&#xff09;spider文件的更改&#xff1a;&#xff08;3&#xff09;items.py文件&#xff08;两个项目一致&#xff01;&…...

提升效率,稳定可靠:亚信安慧AntDB的企业价值

亚信安慧AntDB分布式数据库凭借平滑扩展、高可用性和低成本三大核心优势&#xff0c;在业界获得了极高的评价和认可。这些优点不仅为AntDB提供了巨大的市场发展潜力&#xff0c;也使其成为众多企业在数据管理上的首选解决方案。 AntDB的平滑扩展特性极大地提升了企业的灵活性和…...

洛谷入门——P1567 统计天数

统计天数 题目描述 炎热的夏日&#xff0c;KC 非常的不爽。他宁可忍受北极的寒冷&#xff0c;也不愿忍受厦门的夏天。最近&#xff0c;他开始研究天气的变化。他希望用研究的结果预测未来的天气。 经历千辛万苦&#xff0c;他收集了连续 N ( 1 ≤ N ≤ 1 0 6 ) N(1 \leq N …...

C++概述

目录 一、C关键字&#xff08;63个&#xff09; 二、C几个关键点&#xff1a; 三、C语言缺陷一&#xff1a;命名冲突 四、C新概念&#xff1a;命名空间&#xff08;namespace&#xff09; 五、命名空间的嵌套&#xff1a; 六、展开命名空间&#xff1a;&#xff08;using …...

业务系统对接大模型的基础方案:架构设计与关键步骤

业务系统对接大模型&#xff1a;架构设计与关键步骤 在当今数字化转型的浪潮中&#xff0c;大语言模型&#xff08;LLM&#xff09;已成为企业提升业务效率和创新能力的关键技术之一。将大模型集成到业务系统中&#xff0c;不仅可以优化用户体验&#xff0c;还能为业务决策提供…...

conda相比python好处

Conda 作为 Python 的环境和包管理工具&#xff0c;相比原生 Python 生态&#xff08;如 pip 虚拟环境&#xff09;有许多独特优势&#xff0c;尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处&#xff1a; 一、一站式环境管理&#xff1a…...

Unity3D中Gfx.WaitForPresent优化方案

前言 在Unity中&#xff0c;Gfx.WaitForPresent占用CPU过高通常表示主线程在等待GPU完成渲染&#xff08;即CPU被阻塞&#xff09;&#xff0c;这表明存在GPU瓶颈或垂直同步/帧率设置问题。以下是系统的优化方案&#xff1a; 对惹&#xff0c;这里有一个游戏开发交流小组&…...

React---day11

14.4 react-redux第三方库 提供connect、thunk之类的函数 以获取一个banner数据为例子 store&#xff1a; 我们在使用异步的时候理应是要使用中间件的&#xff0c;但是configureStore 已经自动集成了 redux-thunk&#xff0c;注意action里面要返回函数 import { configureS…...

代码随想录刷题day30

1、零钱兑换II 给你一个整数数组 coins 表示不同面额的硬币&#xff0c;另给一个整数 amount 表示总金额。 请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额&#xff0c;返回 0 。 假设每一种面额的硬币有无限个。 题目数据保证结果符合 32 位带…...

GruntJS-前端自动化任务运行器从入门到实战

Grunt 完全指南&#xff1a;从入门到实战 一、Grunt 是什么&#xff1f; Grunt是一个基于 Node.js 的前端自动化任务运行器&#xff0c;主要用于自动化执行项目开发中重复性高的任务&#xff0c;例如文件压缩、代码编译、语法检查、单元测试、文件合并等。通过配置简洁的任务…...

08. C#入门系列【类的基本概念】:开启编程世界的奇妙冒险

C#入门系列【类的基本概念】&#xff1a;开启编程世界的奇妙冒险 嘿&#xff0c;各位编程小白探险家&#xff01;欢迎来到 C# 的奇幻大陆&#xff01;今天咱们要深入探索这片大陆上至关重要的 “建筑”—— 类&#xff01;别害怕&#xff0c;跟着我&#xff0c;保准让你轻松搞…...

Golang——7、包与接口详解

包与接口详解 1、Golang包详解1.1、Golang中包的定义和介绍1.2、Golang包管理工具go mod1.3、Golang中自定义包1.4、Golang中使用第三包1.5、init函数 2、接口详解2.1、接口的定义2.2、空接口2.3、类型断言2.4、结构体值接收者和指针接收者实现接口的区别2.5、一个结构体实现多…...

android RelativeLayout布局

<?xml version"1.0" encoding"utf-8"?> <RelativeLayout xmlns:android"http://schemas.android.com/apk/res/android"android:layout_width"match_parent"android:layout_height"match_parent"android:gravity&…...

LOOI机器人的技术实现解析:从手势识别到边缘检测

LOOI机器人作为一款创新的AI硬件产品&#xff0c;通过将智能手机转变为具有情感交互能力的桌面机器人&#xff0c;展示了前沿AI技术与传统硬件设计的完美结合。作为AI与玩具领域的专家&#xff0c;我将全面解析LOOI的技术实现架构&#xff0c;特别是其手势识别、物体识别和环境…...