pytorch升级打怪(八)
保存模型和加载已有模型
- 保存并加载模型
- 保存
- 加载
保存并加载模型
在本节中,我们将研究如何通过保存、加载和运行模型预测来保持模型状态。
import torch
import torchvision.models as models
保存
PyTorch模型将学习的参数存储在内部状态字典中,称为state_dict。这些可以通过thetorchtorch.save方法持久化:
model = models.vgg16(weights='IMAGENET1K_V1')
torch.save(model.state_dict(), 'model_weights.pth')
加载
要加载模型权重,您需要先创建同一模型的实例,然后使用load_state_dict()方法加载参数。
model = models.vgg16() # we do not specify ``weights``, i.e. create untrained model
model.load_state_dict(torch.load('model_weights.pth'))
print(model.eval())```shell
VGG((features): Sequential((0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(1): ReLU(inplace=True)(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(3): ReLU(inplace=True)(4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(6): ReLU(inplace=True)(7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(8): ReLU(inplace=True)(9): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(11): ReLU(inplace=True)(12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(13): ReLU(inplace=True)(14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(15): ReLU(inplace=True)(16): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(17): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(18): ReLU(inplace=True)(19): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(20): ReLU(inplace=True)(21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(22): ReLU(inplace=True)(23): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(24): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(25): ReLU(inplace=True)(26): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(27): ReLU(inplace=True)(28): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(29): ReLU(inplace=True)(30): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False))(avgpool): AdaptiveAvgPool2d(output_size=(7, 7))(classifier): Sequential((0): Linear(in_features=25088, out_features=4096, bias=True)(1): ReLU(inplace=True)(2): Dropout(p=0.5, inplace=False)(3): Linear(in_features=4096, out_features=4096, bias=True)(4): ReLU(inplace=True)(5): Dropout(p=0.5, inplace=False)(6): Linear(in_features=4096, out_features=1000, bias=True))
)
相关文章:
pytorch升级打怪(八)
保存模型和加载已有模型 保存并加载模型保存加载 保存并加载模型 在本节中,我们将研究如何通过保存、加载和运行模型预测来保持模型状态。 import torch import torchvision.models as models保存 PyTorch模型将学习的参数存储在内部状态字典中,称为s…...
全智能深度演进,一键成片让视频创作颠覆式提效
全智能一键成片,让内容创作的「边际成本」逼近于零。 大模型和AIGC技术的发展,可以用“日新月异”来形容,其迭代速度史无前例,涌现出的各类垂直应用模型,也使得音视频行业的应用场景更加广泛和多样化。 然而ÿ…...
uniapp(vue3) H5页面连接打印机并打印
一、找到对应厂商打印机的驱动并在windows上面安装。查看是否安装完成可以在:控制面板->查看设备和打印机,找到对应打印机驱动是否安装完成 二、打印机USB连接电脑 三、运行代码调用浏览器打印,主要使用的是window.print()功能。下面使用…...
Android视角看鸿蒙第八课(module.json5中的各字段含义之abilities)下
Android视角看鸿蒙第八课(module.json5中的各字段含义之abilities)下 导读 上篇文章开始学习abilities下的各字段含义,因为篇幅原因只学习了name、srcEntry、description、icon和label字段的含义和用法, 这篇文章继续学习和了解其他字段。 …...
设计模式 适配器模式
1.背景 适配器模式,这个模式也很简单,你笔记本上的那个拖在外面的黑盒子就是个适配器,一般你在中国能用,在日本也能用,虽然两个国家的的电源电压不同,中国是 220V,日本是 110V,但是这…...
前端面试题详解
前端面试 1.app如何实现登陆成功,卸载app重新安装再进入获取上一次已经登陆的信息? 要实现前端APP在登录成功后,即使卸载并重新安装也能获取上一次已经登录的信息,通常涉及以下几个关键步骤: 1. 使用持久化存储 在APP…...
抖音,剪映,TikTok,竖屏短视频转场pr模板视频素材
120个叠加效果视频转场过渡素材,抖音,剪映,TikTok,短视频转场pr模板项目工程文件。 效果:VHS、光效、胶片、霓虹灯闪光、X射线、信号、老电影等。 适用软件:Adobe Premiere Pro 2018 12.0或更高版本。 视频素材与大多数应用程序兼容ÿ…...
python网络相册设计与实现flask-django-nodejs-php
此系统设计主要采用的是python语言来进行开发,采用django框架技术,框架分为三层,分别是控制层Controller,业务处理层Service,持久层dao,能够采用多层次管理开发,对于各个模块设计制作有一定的安…...
设计模式: 外观模式
文章目录 一、什么是外观模式二、外观模式结构1、外观模式的主要角色包括:2、外观模式通常适用于以下情况: 三、优点 一、什么是外观模式 外观模式(Facade Pattern)是一种结构型设计模式,它提供了一个统一的接口&…...
Samba局域网共享文件
基于两个协议:smb协议(Server Message Block,服务消息块)和cifs协议(Common Internet File System,通用互联网文件系统) 两个主进程:smbd 和nmbd进程。 smbd:提供对服务…...
基于FPGA实现的UDP协议栈设计_汇总
基于FPGA实现的千兆以太网UDP协议栈设计(汇总篇) 1. MAC设计 2. IP层设计 3. ARP层设计 4. UDP层设计 5. ICMP层设计 6. 仲裁器设计 8. RGMII接口设计 9. 跨时钟域设计...
maven手动上传的第三方包 打包项目报错 Could not find xxx in central 解决办法
背景: 在Maven私服手动上传了第三方的jar包, 只有jar包, 没有pom文件, 项目在ide中可以正常编译启动,但打包报错无法找到jar包 解决办法: 上传jar包的时候, 点击生成pom. 则打包的时候不会报错...
利用Scala与Apache HttpClient实现网络音频流的抓取
概述 在当今数字化时代,网络数据的抓取和处理已成为许多应用程序和服务的重要组成部分。本文将介绍如何利用Scala编程语言结合Apache HttpClient工具库实现网络音频流的抓取。通过本文,读者将学习如何利用强大的Scala语言和Apache HttpClient库来抓取网…...
Linux(openEuler)部署SpringBoot前后端分离项目(Nginx负载均衡)
假如数据库在本地,没有放在Linux中 1.先把数据库中root的主机改成% 2.项目中的数据库链接配置换成本机ip 3.打包 4.把打包好的jar包放到Linux中 一般把jar包放到opt下 5.把前端部分拷贝到Linux的nginx中 5.1在package.json中修改build的值为图中这样 5.2同时由于在…...
InnoDB 缓存
本文主要聊InnoDB内存结构, 先来看下官网Mysql 8.0 InnoDB架构图 MySQL :: MySQL 8.0 Reference Manual :: 17.4 InnoDB Architecture 如上图所示,InnoDB内存主要包含Buffer Pool, Change Buffer, Log Buffer, Adaptive Hash Index Buffer Pool 其实 buffer pool 就是内存中的…...
目标检测——PP-YOLOE-R算法解读
PP-YOLO系列,均是基于百度自研PaddlePaddle深度学习框架发布的算法,2020年基于YOLOv3改进发布PP-YOLO,2021年发布PP-YOLOv2和移动端检测算法PP-PicoDet,2022年发布PP-YOLOE和PP-YOLOE-R。由于均是一个系列,所以放一起解…...
轻松解锁微博视频:基于Perl的下载解决方案
引言 随着微博成为中国最受欢迎的社交平台之一,其内容已经变得丰富多彩,特别是视频内容吸引了大量用户的关注。然而,尽管用户对微博上的视频内容感兴趣,但却面临着无法直接下载这些视频的难题。本文旨在介绍一个基于Perl的解决方…...
asp.net mvc 重新引导视图路径,改变视图路径
asp.net mvc 重新引导视图路径,改变视图路径 使用指定的控制器上下文和母版视图名称来查找指定的视图 通过本文学习,你可以根据该技法,去实现,站点自定义皮肤,手机站和电脑站,其他设备站点,在不…...
《优化接口设计的思路》系列:第九篇—用好缓存,让你的接口速度飞起来
一、前言 大家好!我是sum墨,一个一线的底层码农,平时喜欢研究和思考一些技术相关的问题并整理成文,限于本人水平,如果文章和代码有表述不当之处,还请不吝赐教。 作为一名从业已达六年的老码农,…...
专业130+总分410+西南交通大学924信号与系统考研经验西南交大电子信息通信工程,真题,大纲,参考书。
初试分数出来,专业课924信号与系统130,总分410,整体上发挥正常,但是还有遗憾,其实自己可以做的更好,总结一下经验,希望对大家有所帮助。专业课:(130) 西南交…...
vscode里如何用git
打开vs终端执行如下: 1 初始化 Git 仓库(如果尚未初始化) git init 2 添加文件到 Git 仓库 git add . 3 使用 git commit 命令来提交你的更改。确保在提交时加上一个有用的消息。 git commit -m "备注信息" 4 …...
Unity3D中Gfx.WaitForPresent优化方案
前言 在Unity中,Gfx.WaitForPresent占用CPU过高通常表示主线程在等待GPU完成渲染(即CPU被阻塞),这表明存在GPU瓶颈或垂直同步/帧率设置问题。以下是系统的优化方案: 对惹,这里有一个游戏开发交流小组&…...
dedecms 织梦自定义表单留言增加ajax验证码功能
增加ajax功能模块,用户不点击提交按钮,只要输入框失去焦点,就会提前提示验证码是否正确。 一,模板上增加验证码 <input name"vdcode"id"vdcode" placeholder"请输入验证码" type"text&quo…...
渲染学进阶内容——模型
最近在写模组的时候发现渲染器里面离不开模型的定义,在渲染的第二篇文章中简单的讲解了一下关于模型部分的内容,其实不管是方块还是方块实体,都离不开模型的内容 🧱 一、CubeListBuilder 功能解析 CubeListBuilder 是 Minecraft Java 版模型系统的核心构建器,用于动态创…...
管理学院权限管理系统开发总结
文章目录 🎓 管理学院权限管理系统开发总结 - 现代化Web应用实践之路📝 项目概述🏗️ 技术架构设计后端技术栈前端技术栈 💡 核心功能特性1. 用户管理模块2. 权限管理系统3. 统计报表功能4. 用户体验优化 🗄️ 数据库设…...
基于TurtleBot3在Gazebo地图实现机器人远程控制
1. TurtleBot3环境配置 # 下载TurtleBot3核心包 mkdir -p ~/catkin_ws/src cd ~/catkin_ws/src git clone -b noetic-devel https://github.com/ROBOTIS-GIT/turtlebot3.git git clone -b noetic https://github.com/ROBOTIS-GIT/turtlebot3_msgs.git git clone -b noetic-dev…...
MySQL JOIN 表过多的优化思路
当 MySQL 查询涉及大量表 JOIN 时,性能会显著下降。以下是优化思路和简易实现方法: 一、核心优化思路 减少 JOIN 数量 数据冗余:添加必要的冗余字段(如订单表直接存储用户名)合并表:将频繁关联的小表合并成…...
并发编程 - go版
1.并发编程基础概念 进程和线程 A. 进程是程序在操作系统中的一次执行过程,系统进行资源分配和调度的一个独立单位。B. 线程是进程的一个执行实体,是CPU调度和分派的基本单位,它是比进程更小的能独立运行的基本单位。C.一个进程可以创建和撤销多个线程;同一个进程中…...
比较数据迁移后MySQL数据库和OceanBase数据仓库中的表
设计一个MySQL数据库和OceanBase数据仓库的表数据比较的详细程序流程,两张表是相同的结构,都有整型主键id字段,需要每次从数据库分批取得2000条数据,用于比较,比较操作的同时可以再取2000条数据,等上一次比较完成之后,开始比较,直到比较完所有的数据。比较操作需要比较…...
【 java 虚拟机知识 第一篇 】
目录 1.内存模型 1.1.JVM内存模型的介绍 1.2.堆和栈的区别 1.3.栈的存储细节 1.4.堆的部分 1.5.程序计数器的作用 1.6.方法区的内容 1.7.字符串池 1.8.引用类型 1.9.内存泄漏与内存溢出 1.10.会出现内存溢出的结构 1.内存模型 1.1.JVM内存模型的介绍 内存模型主要分…...
