当前位置: 首页 > news >正文

深度学习 tablent表格识别实践记录

下载代码:https://github.com/asagar60/TableNet-pytorch
下载模型:https://drive.usercontent.google.com/download?id=13eDDMHbxHaeBbkIsQ7RSgyaf6DSx9io1&export=download&confirm=t&uuid=1bf2e85f-5a4f-4ce8-976c-395d865a3c37

原理:https://asagar60.medium.com/tablenet-deep-learning-model-for-end-to-end-table-detection-and-tabular-data-extraction-from-b1547799fe29

tablenet

通过端到端的训练来同时优化表格区域检测和表格结构识别,从而实现更高的准确性和效率。

任务:

  • 精确检测称为表检测的表格区域。

  • 检测到的表的行和列中检测和提取信息,称为表结构识别。

tablenet使用一个网络来同时解决这两个任务。它是一个端到端模型,将文档分辨率为 1024x1024 的图像作为输入,并生成两个语义标记的输出,一个用于图像中的表,另一个用于表中的列,分别称为表和列掩码。生成这些掩码后,使用表掩码从图像中过滤表格。

模型架构:

在这里插入图片描述

类似于编码器-解码器模型,编码器对图像中表的位置和结构信息进行编码,解码器使用这些信息为表和列生成掩码。

对于编码器,使用在 ImageNet 数据集上预训练的 VGG-19 模型。

接下来是两个单独的解码器分支,分别用于对表和列进行分段。解码器分支相互独立训练,而编码器可以使用两个解码器的梯度进行微调。

VGG-19 的全连接层(pool5 之后的层)被替换为两个 (1x1) 卷积层。这些卷积层 (conv6) 中的每一个都使用 ReLU 激活,然后是概率为 0.8 的 dropout 层。

来自 3 个池化层的输出与表解码器和列解码器连接,然后多次upscale。值得一提的是,ResNet-18 和 EfficientNet 的性能几乎接近 DenseNet,但选择了基于测试数据的最佳 F1 分数的模型。

训练策略:
在这里插入图片描述

与 VGG19、ResNet-18 和 EfficientNet 相比,Densenet121 作为编码器效果最好。

模型:
→DenseNet121 编码器块

→Table 解码器块

→Column 解码器模块

在这里插入图片描述

loss函数
BCEWithLogitsLoss() 在这里用作损失。这是 Sigmoid + 二进制交叉熵损失的组合。这将分别应用于列掩码和表掩码。

在这里插入图片描述


class TableNetLoss(nn.Module):def __init__(self):super(TableNetLoss, self).__init__()self.bce = nn.BCEWithLogitsLoss()def forward(self, table_pred, table_gt, col_pred = None, col_gt = None, ):table_loss = self.bce(table_pred, table_gt)column_loss = self.bce(col_pred, col_gt)

优化器

用的adam

原有模型测试效果

下载github TableNet-pytorch 代码
安装pytesseract
设置环境变量
下载语言包

更改app的pytesseract路径, pytesseract.pytesseract.tesseract_cmd
设置环境:pt.image_to_string(thresh1,lang=“chi_sim”)

streamlit run app.py

效果不是太好

在这里插入图片描述

训练模型

python train.py

报错内存不足,将测试集的batch_size也调整为2

使用原始数据集,训练结果:

在这里插入图片描述

相关文章:

深度学习 tablent表格识别实践记录

下载代码:https://github.com/asagar60/TableNet-pytorch 下载模型:https://drive.usercontent.google.com/download?id13eDDMHbxHaeBbkIsQ7RSgyaf6DSx9io1&exportdownload&confirmt&uuid1bf2e85f-5a4f-4ce8-976c-395d865a3c37 原理&#…...

深度学习 线性神经网络(线性回归 从零开始实现)

介绍: 在线性神经网络中,线性回归是一种常见的任务,用于预测一个连续的数值输出。其目标是根据输入特征来拟合一个线性函数,使得预测值与真实值之间的误差最小化。 线性回归的数学表达式为: y w1x1 w2x2 ... wnxn …...

HBase在表操作--显示中文

启动HBase后,Master和RegionServer两个服务器,分别对应进程为HMaster和HRegionServe。(可通过jps查看) 1.进入表操作 hbase shell 2.查看当前库中存在的表 list 3.查看表中数据(注:学习期间可用&#…...

基于BusyBox的imx6ull移植sqlite3到ARM板子上

1.官网下载源码 https://www.sqlite.org/download.html 下载源码解压到本地的linux环境下 2.解压并创建install文件夹 3.使用命令行配置 在解压的文件夹下打开终端,然后输入以下内容,其中arm-linux-gnueabihf是自己的交叉编译器【自己替换】 ./config…...

连续子数组的最大和

问题描述: 输入一个整型数组,数组里有正数也有负数。求连续子数组中的最大和为多少。 举例: 数组:arry{1 , 2 ,-5 , 4 , 1 ,-2} 输出:5,数组中连续的位置相加最大值为5, 41 方法…...

Photoshop 工具使用详解(全集 · 2024版)

全面介绍 Photoshop 工具箱里的工具,点击下列表格中工具名称或图示,即可查阅工具的使用详解。 移动工具Move Tool移动选区、图层和参考线。画板工具Artboard Tool创建、移动多个画布或调整其大小。moVe快捷键:V 矩形选框工具 Rectangular Mar…...

C++函数返回机制,返回类型

return语句终止当前正在执行的函数并将控制权返回到调用该函数的地方。 return语句有两种形式 return;return expression; 无返回值函数 没有返回值的return语句只能用在返回类型是void的函数中。 返回void的函数不要求必须有return语句,因为这类函数的最后一句…...

[linux] Key is stored in legacy trusted.gpg keyring

修复 Ubuntu 中的 “Key is stored in legacy trusted.gpg keyring” 问题_key is stored in legacy trusted.gpg keyring (/etc/-CSDN博客 复制到trusted.gpd.d 目录中(快速但不优雅的方法) 如果你觉得手动做上面的事情不舒服,那么,你可以忽略这个警告…...

阿里云部署OneApi

基于 Docker 进行部署 # 使用 SQLite 的部署命令: docker run --name one-api -d --restart always -p 3000:3000 -e TZAsia/Shanghai -v /home/ubuntu/data/one-api:/data justsong/one-api # 使用 MySQL 的部署命令,在上面的基础上添加 -e SQL_DSN&qu…...

MapReduce学习问题记录

1、如何跳过对某行数据的处理 第一行数据是字段名不需要处理,我们知道第一行偏移量是0(行记录的时候是从数组首地址开始,到了行标识符进行一次计数,这个计数就是行偏移量,从0开始),我们根据偏移…...

Elasticsearch优化

集群配置 1、调整副本数:考虑数据的可用性和读取性能,合理配置分片的副本数。 2、合理配置分片大小(分片的合理容量:10GB-50GB):避免分片过大,以确保更好的性能和均衡的负载。 3、监控集群状态:使用监控工…...

【Redis知识点总结】(六)——主从同步、哨兵模式、集群

Redis知识点总结(六)——主从同步、哨兵模式、集群 主从同步哨兵集群 主从同步 redis的主从同步,一般是一个主节点,加上多个从节点。只有主节点可以接收写命令,主节点接收到的写命令,会同步给从节点&#…...

Java面试题:设计一个线程安全的单例模式,并解释其内存占用和垃圾回收机制;使用生产者消费者模式实现一个并发安全的队列;设计一个支持高并发的分布式锁

Java深度面试题:设计模式、内存管理与并发编程的综合考察 随着Java技术的不断发展,对Java开发者的技术要求也在不断提高。设计模式、内存管理、多线程工具类以及并发工具包和框架等都是Java开发者必须掌握的核心知识点。本文将通过三道综合性的面试题&a…...

【硬件设计】以立创EDA举例——持续更新

【硬件设计】以立创EDA举例——持续更新 文章目录 前言立创EDA官网教程一、原理图二、PCB1.布局2.设计规则3.电流与线宽 4.PCB走线5.Polar Si90006.过孔7.铺铜总结 前言 提示:以下是本篇文章正文内容,下面案例可供参考 立创EDA官网教程 立创EDA使用教程…...

Chain of Note-CoN增强检索增强型语言模型的鲁棒性

Enhancing Robustness in Retrieval-Augmented Language Models 检索增强型语言模型(RALMs)在大型语言模型的能力上取得了重大进步,特别是在利用外部知识源减少事实性幻觉方面。然而,检索到的信息的可靠性并不总是有保证的。检索…...

Uniapp 的 uni.request传参后端

以下是使用Uniapp的交互数据的两种方式 后端使用Parameter接收数据 后端使用RequestBody接收Json格式数据 后端: CrossOrigin RestController RequestMapping("/user") public class UserController {GetMapping("/login")public String lo…...

数据可视化-ECharts Html项目实战(5)

在之前的文章中,我们学习了如何设置滚动图例,工具箱设置和插入图片。想了解的朋友可以查看这篇文章。同时,希望我的文章能帮助到你,如果觉得我的文章写的不错,请留下你宝贵的点赞,谢谢 数据可视化-ECharts…...

C++学习之旅(二)运行四个小项目 (Ubuntu使用Vscode)

如果是c语言学的比较好的同学 可以直接跟着代码敲一遍&#xff0c;代码附有详细语法介绍&#xff0c;不可错过 一&#xff0c;猜数字游戏 #include <iostream> #include <cstdlib> #include <ctime>int main() {srand(static_cast<unsigned int>(tim…...

数据分析与挖掘

数据起源&#xff1a; 规模庞大&#xff0c;结构复杂&#xff0c;难以通过现有商业工具和技术在可容忍的时间内获取、管理和处理的数据集。具有5V特性&#xff1a;数量&#xff08;Volume&#xff09;&#xff1a;数据量大、多样性&#xff08;Variety&#xff09;&#xff1a…...

Maxwell监听mysql的binlog日志变化写入kafka消费者

一. 环境&#xff1a; maxwell:v1.29.2 (从1.30开始maxwell停止了对java8的使用&#xff0c;改为为11) maxwell1.29.2这个版本对mysql8.0以后的缺少utf8mb3字符的解码问题&#xff0c;需要对原码中加上一个部分内容 &#xff1a;具体也给大家做了总结 &#xff1a; 关于v1.…...

在鸿蒙HarmonyOS 5中实现抖音风格的点赞功能

下面我将详细介绍如何使用HarmonyOS SDK在HarmonyOS 5中实现类似抖音的点赞功能&#xff0c;包括动画效果、数据同步和交互优化。 1. 基础点赞功能实现 1.1 创建数据模型 // VideoModel.ets export class VideoModel {id: string "";title: string ""…...

uniapp中使用aixos 报错

问题&#xff1a; 在uniapp中使用aixos&#xff0c;运行后报如下错误&#xff1a; AxiosError: There is no suitable adapter to dispatch the request since : - adapter xhr is not supported by the environment - adapter http is not available in the build 解决方案&…...

【Post-process】【VBA】ETABS VBA FrameObj.GetNameList and write to EXCEL

ETABS API实战:导出框架元素数据到Excel 在结构工程师的日常工作中,经常需要从ETABS模型中提取框架元素信息进行后续分析。手动复制粘贴不仅耗时,还容易出错。今天我们来用简单的VBA代码实现自动化导出。 🎯 我们要实现什么? 一键点击,就能将ETABS中所有框架元素的基…...

车载诊断架构 --- ZEVonUDS(J1979-3)简介第一篇

我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 做到欲望极简,了解自己的真实欲望,不受外在潮流的影响,不盲从,不跟风。把自己的精力全部用在自己。一是去掉多余,凡事找规律,基础是诚信;二是…...

react-pdf(pdfjs-dist)如何兼容老浏览器(chrome 49)

之前都是使用react-pdf来渲染pdf文件&#xff0c;这次有个需求是要兼容xp环境&#xff0c;xp上chrome最高支持到49&#xff0c;虽然说iframe或者embed都可以实现预览pdf&#xff0c;但为了后续的定制化需求&#xff0c;还是需要使用js库来渲染。 chrome 49测试环境 能用的测试…...

Excel 怎么让透视表以正常Excel表格形式显示

目录 1、创建数据透视表 2、设计 》报表布局 》以表格形式显示 3、设计 》分类汇总 》不显示分类汇总 1、创建数据透视表 2、设计 》报表布局 》以表格形式显示 3、设计 》分类汇总 》不显示分类汇总...

2025-06-01-Hive 技术及应用介绍

Hive 技术及应用介绍 参考资料 Hive 技术原理Hive 架构及应用介绍Hive - 小海哥哥 de - 博客园https://cwiki.apache.org/confluence/display/Hive/Home(官方文档) Apache Hive 是基于 Hadoop 构建的数据仓库工具&#xff0c;它为海量结构化数据提供类 SQL 的查询能力&#xf…...

LeetCode第244题_最短单词距离II

LeetCode第244题&#xff1a;最短单词距离II 问题描述 设计一个类&#xff0c;接收一个单词数组 wordsDict&#xff0c;并实现一个方法&#xff0c;该方法能够计算两个不同单词在该数组中出现位置的最短距离。 你需要实现一个 WordDistance 类: WordDistance(String[] word…...

Git 切换到旧提交,同时保证当前修改不丢失

在 Git 中&#xff0c;可以通过以下几种方式切换到之前的提交&#xff0c;同时保留当前的修改 1. 使用 git checkout 创建临时分离头指针&#xff08;推荐用于查看代码&#xff09; git checkout <commit-hash>这会让你进入"分离头指针"状态&#xff0c;你可…...

【设计模式】1.简单工厂、工厂、抽象工厂模式

every blog every motto: You can do more than you think. https://blog.csdn.net/weixin_39190382?typeblog 0. 前言 以下是 简单工厂模式、工厂方法模式 和 抽象工厂模式 的 Python 实现与对比&#xff0c;结合代码示例和实际应用场景说明&#xff1a; 1. 简单工厂模式&a…...