当前位置: 首页 > news >正文

R语言Meta分析核心技术:回归诊断与模型验证

R语言作为一种强大的统计分析和绘图语言,在科研领域发挥着日益重要的作用。其中,Meta分析作为一种整合多个独立研究结果的统计方法,在R语言中得到了广泛的应用。通过R语言进行Meta分析,研究者能够更为准确、全面地评估某一研究问题的现状和发展趋势。

R语言在Meta分析中的应用主要体现在数据整合、效应量计算、异质性检验以及结果可视化等方面。利用R语言的各种包(package),研究者可以方便地导入和处理数据,计算不同研究的效应量,并通过统计模型检验各研究间的异质性。此外,R语言还提供了丰富的绘图功能,使得Meta分析的结果能够以直观、易懂的方式呈现出来。

Meta分析的应用领域十分广泛,几乎涵盖了所有科学研究领域。在医学领域,Meta分析常用于评估某种治疗方法或药物的有效性;在教育学领域,它可以用来比较不同教学方法的效果;在生态学领域,Meta分析则有助于揭示不同因素对生态系统的影响。此外,在心理学、社会学、经济学等多个领域,Meta分析都发挥着不可或缺的作用。

R语言在Meta分析中的优势在于其开放性和灵活性。通过自定义函数和脚本,研究者可以根据具体研究需求进行个性化分析。同时,R语言还拥有丰富的社区资源和在线帮助文档,使得初学者能够迅速上手并掌握Meta分析的基本技能。

然而,值得注意的是,虽然R语言在Meta分析中具有诸多优势,但进行Meta分析仍需要研究者具备一定的统计学和编程基础。此外,在进行Meta分析时,还需要注意数据质量、研究间的可比性以及结果的解释和应用等问题。

总之,R语言作为一种强大的统计分析和绘图语言,在Meta分析中发挥着重要作用。通过掌握R语言进行Meta分析的技能,研究者能够更为准确、全面地评估某一研究问题的现状和发展趋势,为科研领域的进步提供有力支持。

阅读全文点击:《R语言Meta分析核心技术:回归诊断与模型验证》

目录

    • 专题一、Meta分析的选题与检索
    • 专题二、Meta分析与R语言数据清洗及统计方法
    • 专题三、R语言Meta分析与作图
    • 专题四、R语言Meta回归分析
    • 专题五、R语言Meta诊断分析
    • 专题六、R语言Meta分析的不确定性
    • 专题七、机器学习在Meta分析中的应用

专题一、Meta分析的选题与检索

1、Meta分析的选题与文献检索
1)什么是Meta分析
2)Meta分析的选题策略
3)精确检索策略,如何检索全、检索准
4)文献的管理与清洗,如何制定文献纳入排除标准
5)文献数据获取技巧,研究课题探索及科学问题的提出
6)文献计量分析CiteSpace、VOSViewer、R bibliometrix及研究热点分析
在这里插入图片描述

专题二、Meta分析与R语言数据清洗及统计方法

2、Meta分析的常用软件/R语言基础及统计学基础
1)R语言做Meta分析的优势及其《Nature》、《Science》经典案例应用
2)R语言基本操作与数据清洗方法
3)统计学基础和常用统计量计算(sd\se\CI)、三大检验(T检验、卡方检验和F检验)
4)传统统计学与Meta分析的异同
5)R语言Meta分析常用包及相关插件讲解
从自编程计算到调用Meta包(meta、metafor、dmetar、esc、metasens、metamisc、meta4diag、gemtc、robvis、netmeta、brms等),全程分析如何进行meta计算、meta诊断、贝叶斯meta、网状meta、亚组分析、meta回归及作图。
在这里插入图片描述

专题三、R语言Meta分析与作图

3、R语言Meta效应值计算
1)R语言Meta分析的流程
2)各类meta效应值计算、自编程序和调用函数的对比
连续资料的lnRR、MD与SMD
分类资料的RR和OR
3)R语言meta包和metafor包的使用
4)如何用R基础包和ggplot2绘制漂亮的森林图
在这里插入图片描述

专题四、R语言Meta回归分析

4、R语言Meta分析与混合效应模型(分层模型)构建
1)Meta分析的权重计算
2)Meta分析中的固定效应、随机效应
3)如何对Meta模型进行统计检验和构建嵌套模型、分层模型(混合效应)
4)Meta回归和普通回归、混合效应模型的对比及结果分析
5)使用Rbase和ggplot2绘制Meta回归图
在这里插入图片描述

专题五、R语言Meta诊断分析

5、R语言Meta诊断进阶
1)Meta诊断分析(t2、I2、H2、R2、Q、QE、QM等统计量)
2)异质性检验及发表偏移、漏斗图、雷达图、发表偏倚统计检验
3)敏感性分析、增一法、留一法、增一法、Gosh图
4)风险分析、失安全系数计算
5)Meta模型比较和模型的可靠性评价
6)Bootstrap重采样方法评估模型的不确定性
7)如何使用多种方法对文献中的SD、样本量等缺失值的处理
在这里插入图片描述

专题六、R语言Meta分析的不确定性

6、R语言Meta分析的不确定性
1)网状Meta分析
2)贝叶斯理论和蒙特拉罗马尔可夫链MCMC
3)如何使用MCMC优化普通回归模型和Meta模型参数
4)R语言贝叶斯工具Stan、JAGS和brms
5)贝叶斯Meta分析及不确定性分析
在这里插入图片描述

专题七、机器学习在Meta分析中的应用

7、机器学习在Meta分析中的应用
6)机器学习基础以及Meta机器学习的优势
7)Meta加权随机森林(MetaForest)的使用
8)使用Meta机器学习和传统机器学习对文献中的大数据训练与测试
9)如何判断Meta机器学习使用随机效应还是固定效应以及超参数的优化
10)使用Meta机器学习进行驱动因子分析、偏独立分析PDP
在这里插入图片描述

相关文章:

R语言Meta分析核心技术:回归诊断与模型验证

R语言作为一种强大的统计分析和绘图语言,在科研领域发挥着日益重要的作用。其中,Meta分析作为一种整合多个独立研究结果的统计方法,在R语言中得到了广泛的应用。通过R语言进行Meta分析,研究者能够更为准确、全面地评估某一研究问题…...

动态规划Dynamic Programming

上篇文章我们简单入门了动态规划(一般都是简单的上楼梯,分析数据等问题)点我跳转,今天给大家带来的是路径问题,相对于上一篇在一维中摸爬滚打,这次就要上升到二维解决问题,但都用的是动态规划思…...

详解机器学习概念、算法

目录 前言 一、常见的机器学习算法 二、监督学习和非监督学习 三、常见的机器学习概念解释 四、深度学习与机器学习的区别 基于Python 和 TensorFlow 深度学习框架实现简单的多层感知机(MLP)神经网络的示例代码: 欢迎三连哦! 前言…...

语音转文字——sherpa ncnn语音识别离线部署C++实现

简介 Sherpa是一个中文语音识别的项目,使用了PyTorch 进行语音识别模型的训练,然后训练好的模型导出成 torchscript 格式,以便在 C 环境中进行推理。尽管 PyTorch 在 CPU 和 GPU 上有良好的支持,但它可能对资源的要求较高&#x…...

第1篇:Mysql数据库表结构导出字段到Excel(一个sheet中)

package com.xx.util;import org.apache.poi.ss.usermodel.*; import org.apache.poi.xssf.usermodel.XSSFWorkbook;import java.sql.*; import java.io.*;public class DatabaseToExcel {public static void main(String[] args) throws Exception {// 数据库连接配置String u…...

Request请求参数----中文乱码问题

一: GET POST获取请求参数: 在处理为什么会出现中文乱码的情况之前, 首先我们要直到GET 以及 POST两种获取请求参数的不同 1>POST POST获取请求参数是通过输入流getReader来进行获取的, 通过字符输入流来获取响应的请求参数, 并且在解码的时候, 默认的情况是 ISO_885…...

labelImg安装方法

labelImg安装方法(简单方法) - 知乎 (zhihu.com) 1. lableImg下载 git clone https://github.com/tzutalin/labelImg.git 2. 制作lableImg所需的"condapython"环境(conda需要先安装,最好再设置下下载源) 打开Anaconda Prompt对话框 # 创建环境 conda create -n …...

吴恩达2022机器学习专项课程(一) 3.6 可视化样例

问题预览 1.本节课主要讲的是什么? 2.不同的w和b,如何影响线性回归和等高线图? 3.一般用哪种方式,可以找到最佳的w和b? 解读 1.课程内容 设置不同的w和b,观察模型拟合数据,成本函数J的等高线…...

C#入门及进阶教程|Windows窗体属性及方法

1.Windows窗体 窗体本身是一个对象,对应于System.Windows.Forms名称空间的Form类。它有自己的属性、方法和事件,用于控制窗体的外观和行为。窗体又是各种控件的容器,用于容纳各种窗体控件。如果想生成窗体,必须从Form类派生出自己…...

34-Java传输对象模式 ( Transfer Object Pattern )

Java传输对象模式 实现范例 传输对象模式(Transfer Object Pattern)用于从客户端向服务器一次性传递带有多个属性的数据传输对象也被称为数值对象,没有任何行为传输对象是一个具有 getter/setter 方法的简单的 POJO 类,它是可序列…...

flutter实现视频播放器,可根据指定视频地址播放、设置声音,进度条拖动,下载等

需要装依赖&#xff1a; gallery_saver: ^2.3.2video_player: ^2.8.3 AndroidManifest.xml <uses-permission android:name"android.permission.INTERNET"/> 实现代码 import dart:async; import dart:io;import package:flutter/material.dart; import pa…...

微服务(基础篇-001-介绍、Eureka)

目录 认识微服务&#xff08;1&#xff09; 服务架构演变&#xff08;1.1&#xff09; 单体架构&#xff08;1.1.1&#xff09; 分布式架构&#xff08;1.1.2&#xff09; 微服务&#xff08;1.1.3&#xff09; 微服务结构 微服务技术对比 企业需求 SpringCloud(1.2) …...

mac 解决随机出现的蓝色框

macbookair为什么打字的时候按空格键会出现蓝色框? - 知乎...

深入理解与使用go之函数与方法--使用

深入理解与使用go之函数与方法–理解与使用 文章目录 引子函数与方法分类函数函数入参普通参数可变参数默认值返回命名不带命名带命名讨论init 函数defer 函数方法值接收指针接收构造函数引子 在 Go 语言中,函数被视为一等公民(First-Class Citizens),这意味着函数可以像其…...

【QT问题】 Qt信号函数如果重名,调用怎么处理

问题描述&#xff1a; 在调用某个类的信号函数的时候&#xff0c;出现信号函数名字相同&#xff0c;参数不同的情况&#xff0c;但是Qt在链接信号槽的时候&#xff0c;又不需要指明信号函数参数&#xff0c;此时就会出现无法分辨的情况。 例如&#xff1a;QComboBox的信号 Q_…...

登山小分队(dfs,模拟)

原题链接&#xff1a; 题目描述 Foxity和他的好友们相约去爬山&#xff0c;但是他们每个人都来到了不同的山脚下。整个山的结构类似一棵 "树"&#xff0c;有很多的观光节点通过一条条山道连接起来。 在图论中&#xff0c;树是一种无向图&#xff0c;其中任意两个顶…...

Luminar Neo:重塑图像编辑新纪元,Mac与Win双平台畅享创意之旅

在数字时代的浪潮中&#xff0c;图像编辑软件已成为摄影师和设计师们不可或缺的创作工具。Luminar Neo&#xff0c;作为一款专为Mac与Windows双平台打造的图像编辑软件&#xff0c;正以其卓越的性能和创新的编辑功能&#xff0c;引领着图像编辑的新潮流。 Luminar Neo不仅继承…...

计算机二级Python题库深度解析与备考策略

计算机二级Python题库深度解析与备考策略 随着信息技术的飞速发展&#xff0c;Python作为一门简洁、易读且功能强大的编程语言&#xff0c;受到了越来越多人的青睐。计算机二级Python考试作为衡量考生Python编程水平的重要标准&#xff0c;其题库内容涵盖了Python语言的基础知…...

微信商家转账到零钱:实用指南,涵盖开通、使用与常见问题

商家转账到零钱是什么&#xff1f; 商家转账到零钱功能整合了企业付款到零钱和批量转账到零钱&#xff0c;支持批量对外转账&#xff0c;操作便捷。如果你的应用场景是单付款&#xff0c;体验感和企业付款到零钱基本没差别。 商家转账到零钱的使用场景有哪些&#xff1f; 这…...

[精选]Kimi到底是什么,将带来什么?

## 阿里通义千问重磅升级&#xff1a;免费开放1000万字长文档处理功能。 Kimi突然的泼天富贵&#xff0c;大家都想沾一把。短期这一块大概率会继续热一段时间。 作为月之暗面的创始人&#xff0c;杨植麟常把他的AGI梦想形容为“登月计划”&#xff0c;长文本就是这个伟大计划…...

Linux链表操作全解析

Linux C语言链表深度解析与实战技巧 一、链表基础概念与内核链表优势1.1 为什么使用链表&#xff1f;1.2 Linux 内核链表与用户态链表的区别 二、内核链表结构与宏解析常用宏/函数 三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势5.1 插入效率5.2 安全…...

Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以?

Golang 面试经典题&#xff1a;map 的 key 可以是什么类型&#xff1f;哪些不可以&#xff1f; 在 Golang 的面试中&#xff0c;map 类型的使用是一个常见的考点&#xff0c;其中对 key 类型的合法性 是一道常被提及的基础却很容易被忽视的问题。本文将带你深入理解 Golang 中…...

以下是对华为 HarmonyOS NETX 5属性动画(ArkTS)文档的结构化整理,通过层级标题、表格和代码块提升可读性:

一、属性动画概述NETX 作用&#xff1a;实现组件通用属性的渐变过渡效果&#xff0c;提升用户体验。支持属性&#xff1a;width、height、backgroundColor、opacity、scale、rotate、translate等。注意事项&#xff1a; 布局类属性&#xff08;如宽高&#xff09;变化时&#…...

云启出海,智联未来|阿里云网络「企业出海」系列客户沙龙上海站圆满落地

借阿里云中企出海大会的东风&#xff0c;以**「云启出海&#xff0c;智联未来&#xff5c;打造安全可靠的出海云网络引擎」为主题的阿里云企业出海客户沙龙云网络&安全专场于5.28日下午在上海顺利举办&#xff0c;现场吸引了来自携程、小红书、米哈游、哔哩哔哩、波克城市、…...

Opencv中的addweighted函数

一.addweighted函数作用 addweighted&#xff08;&#xff09;是OpenCV库中用于图像处理的函数&#xff0c;主要功能是将两个输入图像&#xff08;尺寸和类型相同&#xff09;按照指定的权重进行加权叠加&#xff08;图像融合&#xff09;&#xff0c;并添加一个标量值&#x…...

基础测试工具使用经验

背景 vtune&#xff0c;perf, nsight system等基础测试工具&#xff0c;都是用过的&#xff0c;但是没有记录&#xff0c;都逐渐忘了。所以写这篇博客总结记录一下&#xff0c;只要以后发现新的用法&#xff0c;就记得来编辑补充一下 perf 比较基础的用法&#xff1a; 先改这…...

新能源汽车智慧充电桩管理方案:新能源充电桩散热问题及消防安全监管方案

随着新能源汽车的快速普及&#xff0c;充电桩作为核心配套设施&#xff0c;其安全性与可靠性备受关注。然而&#xff0c;在高温、高负荷运行环境下&#xff0c;充电桩的散热问题与消防安全隐患日益凸显&#xff0c;成为制约行业发展的关键瓶颈。 如何通过智慧化管理手段优化散…...

DBAPI如何优雅的获取单条数据

API如何优雅的获取单条数据 案例一 对于查询类API&#xff0c;查询的是单条数据&#xff0c;比如根据主键ID查询用户信息&#xff0c;sql如下&#xff1a; select id, name, age from user where id #{id}API默认返回的数据格式是多条的&#xff0c;如下&#xff1a; {&qu…...

《基于Apache Flink的流处理》笔记

思维导图 1-3 章 4-7章 8-11 章 参考资料 源码&#xff1a; https://github.com/streaming-with-flink 博客 https://flink.apache.org/bloghttps://www.ververica.com/blog 聚会及会议 https://flink-forward.orghttps://www.meetup.com/topics/apache-flink https://n…...

laravel8+vue3.0+element-plus搭建方法

创建 laravel8 项目 composer create-project --prefer-dist laravel/laravel laravel8 8.* 安装 laravel/ui composer require laravel/ui 修改 package.json 文件 "devDependencies": {"vue/compiler-sfc": "^3.0.7","axios": …...