R语言Meta分析核心技术:回归诊断与模型验证
R语言作为一种强大的统计分析和绘图语言,在科研领域发挥着日益重要的作用。其中,Meta分析作为一种整合多个独立研究结果的统计方法,在R语言中得到了广泛的应用。通过R语言进行Meta分析,研究者能够更为准确、全面地评估某一研究问题的现状和发展趋势。
R语言在Meta分析中的应用主要体现在数据整合、效应量计算、异质性检验以及结果可视化等方面。利用R语言的各种包(package),研究者可以方便地导入和处理数据,计算不同研究的效应量,并通过统计模型检验各研究间的异质性。此外,R语言还提供了丰富的绘图功能,使得Meta分析的结果能够以直观、易懂的方式呈现出来。
Meta分析的应用领域十分广泛,几乎涵盖了所有科学研究领域。在医学领域,Meta分析常用于评估某种治疗方法或药物的有效性;在教育学领域,它可以用来比较不同教学方法的效果;在生态学领域,Meta分析则有助于揭示不同因素对生态系统的影响。此外,在心理学、社会学、经济学等多个领域,Meta分析都发挥着不可或缺的作用。
R语言在Meta分析中的优势在于其开放性和灵活性。通过自定义函数和脚本,研究者可以根据具体研究需求进行个性化分析。同时,R语言还拥有丰富的社区资源和在线帮助文档,使得初学者能够迅速上手并掌握Meta分析的基本技能。
然而,值得注意的是,虽然R语言在Meta分析中具有诸多优势,但进行Meta分析仍需要研究者具备一定的统计学和编程基础。此外,在进行Meta分析时,还需要注意数据质量、研究间的可比性以及结果的解释和应用等问题。
总之,R语言作为一种强大的统计分析和绘图语言,在Meta分析中发挥着重要作用。通过掌握R语言进行Meta分析的技能,研究者能够更为准确、全面地评估某一研究问题的现状和发展趋势,为科研领域的进步提供有力支持。
阅读全文点击:《R语言Meta分析核心技术:回归诊断与模型验证》
目录
- 专题一、Meta分析的选题与检索
- 专题二、Meta分析与R语言数据清洗及统计方法
- 专题三、R语言Meta分析与作图
- 专题四、R语言Meta回归分析
- 专题五、R语言Meta诊断分析
- 专题六、R语言Meta分析的不确定性
- 专题七、机器学习在Meta分析中的应用
专题一、Meta分析的选题与检索
1、Meta分析的选题与文献检索
1)什么是Meta分析
2)Meta分析的选题策略
3)精确检索策略,如何检索全、检索准
4)文献的管理与清洗,如何制定文献纳入排除标准
5)文献数据获取技巧,研究课题探索及科学问题的提出
6)文献计量分析CiteSpace、VOSViewer、R bibliometrix及研究热点分析
专题二、Meta分析与R语言数据清洗及统计方法
2、Meta分析的常用软件/R语言基础及统计学基础
1)R语言做Meta分析的优势及其《Nature》、《Science》经典案例应用
2)R语言基本操作与数据清洗方法
3)统计学基础和常用统计量计算(sd\se\CI)、三大检验(T检验、卡方检验和F检验)
4)传统统计学与Meta分析的异同
5)R语言Meta分析常用包及相关插件讲解
从自编程计算到调用Meta包(meta、metafor、dmetar、esc、metasens、metamisc、meta4diag、gemtc、robvis、netmeta、brms等),全程分析如何进行meta计算、meta诊断、贝叶斯meta、网状meta、亚组分析、meta回归及作图。
专题三、R语言Meta分析与作图
3、R语言Meta效应值计算
1)R语言Meta分析的流程
2)各类meta效应值计算、自编程序和调用函数的对比
连续资料的lnRR、MD与SMD
分类资料的RR和OR
3)R语言meta包和metafor包的使用
4)如何用R基础包和ggplot2绘制漂亮的森林图
专题四、R语言Meta回归分析
4、R语言Meta分析与混合效应模型(分层模型)构建
1)Meta分析的权重计算
2)Meta分析中的固定效应、随机效应
3)如何对Meta模型进行统计检验和构建嵌套模型、分层模型(混合效应)
4)Meta回归和普通回归、混合效应模型的对比及结果分析
5)使用Rbase和ggplot2绘制Meta回归图
专题五、R语言Meta诊断分析
5、R语言Meta诊断进阶
1)Meta诊断分析(t2、I2、H2、R2、Q、QE、QM等统计量)
2)异质性检验及发表偏移、漏斗图、雷达图、发表偏倚统计检验
3)敏感性分析、增一法、留一法、增一法、Gosh图
4)风险分析、失安全系数计算
5)Meta模型比较和模型的可靠性评价
6)Bootstrap重采样方法评估模型的不确定性
7)如何使用多种方法对文献中的SD、样本量等缺失值的处理
专题六、R语言Meta分析的不确定性
6、R语言Meta分析的不确定性
1)网状Meta分析
2)贝叶斯理论和蒙特拉罗马尔可夫链MCMC
3)如何使用MCMC优化普通回归模型和Meta模型参数
4)R语言贝叶斯工具Stan、JAGS和brms
5)贝叶斯Meta分析及不确定性分析
专题七、机器学习在Meta分析中的应用
7、机器学习在Meta分析中的应用
6)机器学习基础以及Meta机器学习的优势
7)Meta加权随机森林(MetaForest)的使用
8)使用Meta机器学习和传统机器学习对文献中的大数据训练与测试
9)如何判断Meta机器学习使用随机效应还是固定效应以及超参数的优化
10)使用Meta机器学习进行驱动因子分析、偏独立分析PDP
相关文章:

R语言Meta分析核心技术:回归诊断与模型验证
R语言作为一种强大的统计分析和绘图语言,在科研领域发挥着日益重要的作用。其中,Meta分析作为一种整合多个独立研究结果的统计方法,在R语言中得到了广泛的应用。通过R语言进行Meta分析,研究者能够更为准确、全面地评估某一研究问题…...

动态规划Dynamic Programming
上篇文章我们简单入门了动态规划(一般都是简单的上楼梯,分析数据等问题)点我跳转,今天给大家带来的是路径问题,相对于上一篇在一维中摸爬滚打,这次就要上升到二维解决问题,但都用的是动态规划思…...

详解机器学习概念、算法
目录 前言 一、常见的机器学习算法 二、监督学习和非监督学习 三、常见的机器学习概念解释 四、深度学习与机器学习的区别 基于Python 和 TensorFlow 深度学习框架实现简单的多层感知机(MLP)神经网络的示例代码: 欢迎三连哦! 前言…...

语音转文字——sherpa ncnn语音识别离线部署C++实现
简介 Sherpa是一个中文语音识别的项目,使用了PyTorch 进行语音识别模型的训练,然后训练好的模型导出成 torchscript 格式,以便在 C 环境中进行推理。尽管 PyTorch 在 CPU 和 GPU 上有良好的支持,但它可能对资源的要求较高&#x…...

第1篇:Mysql数据库表结构导出字段到Excel(一个sheet中)
package com.xx.util;import org.apache.poi.ss.usermodel.*; import org.apache.poi.xssf.usermodel.XSSFWorkbook;import java.sql.*; import java.io.*;public class DatabaseToExcel {public static void main(String[] args) throws Exception {// 数据库连接配置String u…...

Request请求参数----中文乱码问题
一: GET POST获取请求参数: 在处理为什么会出现中文乱码的情况之前, 首先我们要直到GET 以及 POST两种获取请求参数的不同 1>POST POST获取请求参数是通过输入流getReader来进行获取的, 通过字符输入流来获取响应的请求参数, 并且在解码的时候, 默认的情况是 ISO_885…...
labelImg安装方法
labelImg安装方法(简单方法) - 知乎 (zhihu.com) 1. lableImg下载 git clone https://github.com/tzutalin/labelImg.git 2. 制作lableImg所需的"condapython"环境(conda需要先安装,最好再设置下下载源) 打开Anaconda Prompt对话框 # 创建环境 conda create -n …...

吴恩达2022机器学习专项课程(一) 3.6 可视化样例
问题预览 1.本节课主要讲的是什么? 2.不同的w和b,如何影响线性回归和等高线图? 3.一般用哪种方式,可以找到最佳的w和b? 解读 1.课程内容 设置不同的w和b,观察模型拟合数据,成本函数J的等高线…...
C#入门及进阶教程|Windows窗体属性及方法
1.Windows窗体 窗体本身是一个对象,对应于System.Windows.Forms名称空间的Form类。它有自己的属性、方法和事件,用于控制窗体的外观和行为。窗体又是各种控件的容器,用于容纳各种窗体控件。如果想生成窗体,必须从Form类派生出自己…...

34-Java传输对象模式 ( Transfer Object Pattern )
Java传输对象模式 实现范例 传输对象模式(Transfer Object Pattern)用于从客户端向服务器一次性传递带有多个属性的数据传输对象也被称为数值对象,没有任何行为传输对象是一个具有 getter/setter 方法的简单的 POJO 类,它是可序列…...

flutter实现视频播放器,可根据指定视频地址播放、设置声音,进度条拖动,下载等
需要装依赖: gallery_saver: ^2.3.2video_player: ^2.8.3 AndroidManifest.xml <uses-permission android:name"android.permission.INTERNET"/> 实现代码 import dart:async; import dart:io;import package:flutter/material.dart; import pa…...

微服务(基础篇-001-介绍、Eureka)
目录 认识微服务(1) 服务架构演变(1.1) 单体架构(1.1.1) 分布式架构(1.1.2) 微服务(1.1.3) 微服务结构 微服务技术对比 企业需求 SpringCloud(1.2) …...

mac 解决随机出现的蓝色框
macbookair为什么打字的时候按空格键会出现蓝色框? - 知乎...
深入理解与使用go之函数与方法--使用
深入理解与使用go之函数与方法–理解与使用 文章目录 引子函数与方法分类函数函数入参普通参数可变参数默认值返回命名不带命名带命名讨论init 函数defer 函数方法值接收指针接收构造函数引子 在 Go 语言中,函数被视为一等公民(First-Class Citizens),这意味着函数可以像其…...
【QT问题】 Qt信号函数如果重名,调用怎么处理
问题描述: 在调用某个类的信号函数的时候,出现信号函数名字相同,参数不同的情况,但是Qt在链接信号槽的时候,又不需要指明信号函数参数,此时就会出现无法分辨的情况。 例如:QComboBox的信号 Q_…...
登山小分队(dfs,模拟)
原题链接: 题目描述 Foxity和他的好友们相约去爬山,但是他们每个人都来到了不同的山脚下。整个山的结构类似一棵 "树",有很多的观光节点通过一条条山道连接起来。 在图论中,树是一种无向图,其中任意两个顶…...

Luminar Neo:重塑图像编辑新纪元,Mac与Win双平台畅享创意之旅
在数字时代的浪潮中,图像编辑软件已成为摄影师和设计师们不可或缺的创作工具。Luminar Neo,作为一款专为Mac与Windows双平台打造的图像编辑软件,正以其卓越的性能和创新的编辑功能,引领着图像编辑的新潮流。 Luminar Neo不仅继承…...
计算机二级Python题库深度解析与备考策略
计算机二级Python题库深度解析与备考策略 随着信息技术的飞速发展,Python作为一门简洁、易读且功能强大的编程语言,受到了越来越多人的青睐。计算机二级Python考试作为衡量考生Python编程水平的重要标准,其题库内容涵盖了Python语言的基础知…...

微信商家转账到零钱:实用指南,涵盖开通、使用与常见问题
商家转账到零钱是什么? 商家转账到零钱功能整合了企业付款到零钱和批量转账到零钱,支持批量对外转账,操作便捷。如果你的应用场景是单付款,体验感和企业付款到零钱基本没差别。 商家转账到零钱的使用场景有哪些? 这…...
[精选]Kimi到底是什么,将带来什么?
## 阿里通义千问重磅升级:免费开放1000万字长文档处理功能。 Kimi突然的泼天富贵,大家都想沾一把。短期这一块大概率会继续热一段时间。 作为月之暗面的创始人,杨植麟常把他的AGI梦想形容为“登月计划”,长文本就是这个伟大计划…...

MMaDA: Multimodal Large Diffusion Language Models
CODE : https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA,它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构…...
将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?
Otsu 是一种自动阈值化方法,用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理,能够自动确定一个阈值,将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...
【Go】3、Go语言进阶与依赖管理
前言 本系列文章参考自稀土掘金上的 【字节内部课】公开课,做自我学习总结整理。 Go语言并发编程 Go语言原生支持并发编程,它的核心机制是 Goroutine 协程、Channel 通道,并基于CSP(Communicating Sequential Processes࿰…...

在WSL2的Ubuntu镜像中安装Docker
Docker官网链接: https://docs.docker.com/engine/install/ubuntu/ 1、运行以下命令卸载所有冲突的软件包: for pkg in docker.io docker-doc docker-compose docker-compose-v2 podman-docker containerd runc; do sudo apt-get remove $pkg; done2、设置Docker…...

图表类系列各种样式PPT模版分享
图标图表系列PPT模版,柱状图PPT模版,线状图PPT模版,折线图PPT模版,饼状图PPT模版,雷达图PPT模版,树状图PPT模版 图表类系列各种样式PPT模版分享:图表系列PPT模板https://pan.quark.cn/s/20d40aa…...

以光量子为例,详解量子获取方式
光量子技术获取量子比特可在室温下进行。该方式有望通过与名为硅光子学(silicon photonics)的光波导(optical waveguide)芯片制造技术和光纤等光通信技术相结合来实现量子计算机。量子力学中,光既是波又是粒子。光子本…...

STM32HAL库USART源代码解析及应用
STM32HAL库USART源代码解析 前言STM32CubeIDE配置串口USART和UART的选择使用模式参数设置GPIO配置DMA配置中断配置硬件流控制使能生成代码解析和使用方法串口初始化__UART_HandleTypeDef结构体浅析HAL库代码实际使用方法使用轮询方式发送使用轮询方式接收使用中断方式发送使用中…...
Git常用命令完全指南:从入门到精通
Git常用命令完全指南:从入门到精通 一、基础配置命令 1. 用户信息配置 # 设置全局用户名 git config --global user.name "你的名字"# 设置全局邮箱 git config --global user.email "你的邮箱example.com"# 查看所有配置 git config --list…...
【Elasticsearch】Elasticsearch 在大数据生态圈的地位 实践经验
Elasticsearch 在大数据生态圈的地位 & 实践经验 1.Elasticsearch 的优势1.1 Elasticsearch 解决的核心问题1.1.1 传统方案的短板1.1.2 Elasticsearch 的解决方案 1.2 与大数据组件的对比优势1.3 关键优势技术支撑1.4 Elasticsearch 的竞品1.4.1 全文搜索领域1.4.2 日志分析…...

若依登录用户名和密码加密
/*** 获取公钥:前端用来密码加密* return*/GetMapping("/getPublicKey")public RSAUtil.RSAKeyPair getPublicKey() {return RSAUtil.rsaKeyPair();}新建RSAUti.Java package com.ruoyi.common.utils;import org.apache.commons.codec.binary.Base64; im…...