当前位置: 首页 > news >正文

yolov5训练并生成rknn模型部署在RK3588开发板上,实现NPU加速推理

简介

RK3588是瑞芯微(Rockchip)公司推出的一款高性能、低功耗的集成电路芯片。它采用了先进的28纳米工艺技术,并配备了八核心的ARM Cortex-A76和Cortex-A55处理器,以及ARM Mali-G76 GPU。该芯片支持多种接口和功能,适用于广泛的应用领域。

本篇为yolov5部署在RK3588的教程。

一、yolov5训练数据

请选择v5.0版本:Releases · ultralytics/yolov5 (github.com)

训练方法请按照官方的READEME文件进行。 

转换前将model/yolo.py的 Detect 类下的

    def forward(self, x):z = []  # inference outputfor i in range(self.nl):if os.getenv('RKNN_model_hack', '0') != '0':z.append(torch.sigmoid(self.m[i](x[i])))continuex[i] = self.m[i](x[i])  # convbs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()if not self.training:  # inferenceif self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)y = x[i].sigmoid()if self.inplace:y[..., 0:2] = (y[..., 0:2] * 2 + self.grid[i]) * self.stride[i]  # xyy[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # whelse:  # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953xy, wh, conf = y.split((2, 2, self.nc + 1), 4)  # y.tensor_split((2, 4, 5), 4)  # torch 1.8.0xy = (xy * 2 + self.grid[i]) * self.stride[i]  # xywh = (wh * 2) ** 2 * self.anchor_grid[i]  # why = torch.cat((xy, wh, conf), 4)z.append(y.view(bs, -1, self.no))if os.getenv('RKNN_model_hack', '0') != '0':return zreturn x if self.training else (torch.cat(z, 1),) if self.export else (torch.cat(z, 1), x)

修改为:

    def forward(self, x):z = []for i in range(self.nl):x[i] = self.m[i](x[i])return x

但在训练阶段请勿修改。

接着将训练好的best.pt放在工程文件夹下,使用yolov5工程中的export.py将其转换为onnx模型

python export.py --weights best.pt

二、下载RKNN-Toolkit2

1、下面的请在 Ubuntu下进行,创建一个Python环境

conda create -n rknn152 python=3.8

激活环境rknn152

conda activate rknn152

拉取rockchip-linux/rknn-toolkit2 at v1.5.2 (github.com)仓库。我是直接下载的1.5.2版本的zip包。

git clone git@github.com:rockchip-linux/rknn-toolkit2.git

2、安装依赖(requirements_cp38-1.5.2.txt,在rknn-toolkit2/doc目录下)

pip install -r /home/yuzhou/rknn15/rknn-toolkit2-1.5.2/doc/requirements_cp38-1.5.2.txt -i https://pypi.tuna.tsinghua.edu.cn/simple

安装rknn-toolkit2,位置在packages文件夹下面,请选择合适的版本。

pip install /home/yuzhou/rknn15/rknn-toolkit2-1.5.2/packages/rknn_toolkit2-1.5.2+b642f30c-cp38-cp38-linux_x86_64.whl

3、开发环境与板子连接

sudo apt-get install adb

使用USB-typeC线连接到板子的TypeC0接口,PC端识别到虚拟机中。
在开发环境中检查是否连接成功

adb devices

如果连接成功会返回板子的设备ID,如下:

List of devices attached
* daemon not running; starting now at tcp:5037
* daemon started successfully
75370ea69f64098d    device

三、onnx转rknn模型

在rknn-toolkit2工程文件夹中浏览至./examples/onnx/yolov5,将我们在yolov5工程中转换得到的best.onnx复制到该文件夹下,需要修改该文件夹下的test.py中的内容。

  • ONNX_MODEL:模型名;
  • RKNN_MODEL:转换后的rknn模型名;
  • IMG_PATH:推理的图片路径;
  • DATASET:需要打开txt文件修改,改为IMG_PATH的图片名
  • CLASSES:修改为自己数据集的类别

添加target_platform='rk3588'。

进入此目录,运行:

python test.py

如上图如此,说明没有问题,并且在该目录下会生成一个推理图片,以及转换好的rknn模型。

四、下载NPU工程

git clone https://github.com/rockchip-linux/rknpu2

将rknn_server和rknn库发送到板子上

adb push /home/yuzhou/rknn15/rknpu2-1.5.0/runtime/RK3588/Linux/rknn_server/aarch64/usr/bin/rknn_server /usr/bin/
adb push /home/yuzhou/rknn15/rknpu2-1.5.0/runtime/RK3588/Linux/librknn_api/aarch64/librknnrt.so /usr/bin/
adb push /home/yuzhou/rknn15/rknpu2-1.5.0/runtime/RK3588/Linux/librknn_api/aarch64/librknn_api.so /usr/bin/

 在板子上运行rknn_server服务

adb shell 
root@ok3588:/# chmod +x /usr/bin/rknn_server
root@ok3588:/# rknn_server &
[1] 6932
root@ok3588:/# start rknn server, version:1.5.0 (17e11b1 build: 2023-05-18 21:43:39)
I NPUTransfer: Starting NPU Transfer Server, Transfer version 2.1.0 (b5861e7@2020-11-23T11:50:51)

在开发环境中检测rknn_server是否运行成功

(base) yuzhou@yuzhou-HP:~$ adb shell
root@ok3588:/# pgrep rknn_server
6932

有返回进程id说明运行成功。

git clone https://github.com/rockchip-linux/rknpu2.git

五、部署在rk3588上

修改include文件中的头文件postprocess.h

#define OBJ_CLASS_NUM     80  #这里的数字修改为数据集的类的个数

修改model目录下的coco_80_labels_list.txt文件,改为自己的类并保存

car

将转换后的rknn文件放在model/RK3588目录下

在model目录下放入需要推理的图片

cd /home/yuzhou/rknn15/rknpu2-1.5.0/examples/rknn_yolov5_demo

编译,运行shell 

bash ./build-linux_RK3588.sh

成功后生成install目录,将文件推到我们的板子上面

adb push /home/yuzhou/rknn15/rknpu2-1.5.0/examples/rknn_yolov5_demo /mydatas/

与rk3588进行交互 

adb shell 

进入我们传入文件的目录下 

cd /mydatas/rknn_yolov5_demo_Linux

使用npu加速推理

./rknn_yolov5_demo ./model/RK3588/best5s.rknn ./model/6.jpg

 将生成的图片拉取到本地来

adb pull /mydatas/rknn_yolov5_demo_Linux/6out.jpg /home/yuzhou/rknn-toolkit2/examples/onnx/yolov5_rk3588_demo/test

参考文章

瑞芯微RK3588开发板:虚拟机yolov5模型转化、开发板上python脚本调用npu并部署 全流程_yolov5模型在rk3588-CSDN博客

yolov5训练pt模型并转换为rknn模型,部署在RK3588开发板上——从训练到部署全过程_yolov5 rknn-CSDN博客

瑞芯微rk3588部署yolov5模型实战_在rk3588上部署yolov5-CSDN博客

yolov5训练并生成rknn模型以及3588平台部署_yolov5 在rk3588上的部署-CSDN博客

相关文章:

yolov5训练并生成rknn模型部署在RK3588开发板上,实现NPU加速推理

简介 RK3588是瑞芯微(Rockchip)公司推出的一款高性能、低功耗的集成电路芯片。它采用了先进的28纳米工艺技术,并配备了八核心的ARM Cortex-A76和Cortex-A55处理器,以及ARM Mali-G76 GPU。该芯片支持多种接口和功能,适…...

SCI一区 | Matlab实现SSA-TCN-BiGRU-Attention麻雀算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测

SCI一区 | Matlab实现SSA-TCN-BiGRU-Attention麻雀算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测 目录 SCI一区 | Matlab实现SSA-TCN-BiGRU-Attention麻雀算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测预测效果基本介绍模型描述程序…...

javaSwing宿舍管理系统(三个角色)

一、 简介 宿舍管理系统是一个针对学校宿舍管理的软件系统,旨在方便学生、宿管和管理员进行宿舍信息管理、学生信息管理以及宿舍评比等操作。该系统使用 Java Swing 进行界面设计,分为三个角色:管理员、宿管和学生。 二、 功能模块 2.1 管…...

蓝桥杯day12刷题日记

P8720 [蓝桥杯 2020 省 B2] 平面切分 思路&#xff1a;首先借用dalao的图解释一下&#xff0c;又多出一条与当前平面任意一条直线都不重合线时&#xff0c;多了的平面是交点数1&#xff0c;所以用双层循环每次往里面加一条直线&#xff0c;计算交点 #include <iostream>…...

深度学习pytorch——多分类问题(持续更新)

回归问题 vs 分类问题&#xff08;regression vs classification&#xff09; 回归问题&#xff08;regression&#xff09; 1、回归问题的目标是使预测值等于真实值&#xff0c;即predy。 2、求解回归问题的方法是使预测值和真实值的误差最小&#xff0c;即minimize dist(p…...

Flutter探索之旅:控制键盘可见性的神奇工具(flutter_keyboard_visibility)

随着移动应用的不断发展&#xff0c;用户体验的重要性愈发突显。而键盘的弹出和隐藏对于用户体验来说是至关重要的一环。在Flutter中&#xff0c;我们有幸拥有一个强大的工具——flutter_keyboard_visibility&#xff0c;它让我们能够轻松地监测键盘的可见性并做出相应的响应。…...

提升质量透明度,动力电池企业的数据驱动生产实践 | 数据要素 × 工业制造

系列导读 如《“数据要素”三年行动计划&#xff08;2024—2026年&#xff09;》指出&#xff0c;工业制造是“数据要素”的关键领域之一。如何发挥海量数据资源、丰富应用场景等多重优势&#xff0c;以数据流引领技术流、资金流、人才流、物资流&#xff0c;对于制造企业而言…...

华为数通 HCIP-Datacom H12-831 题库补充

2024年 HCIP-Datacom&#xff08;H12-831&#xff09;最新题库&#xff0c;完整题库请扫描上方二维码&#xff0c;持续更新。 缺省情况下&#xff0c;PIM报文的IP协议号是以下哪一项&#xff1f; A&#xff1a;18 B&#xff1a;59 C&#xff1a;103 D&#xff1a;9 答案&a…...

tensorflow中显存分配

tensorflow中显存分配 问题&#xff1a;使用tensorflow-gpu训练模型&#xff0c;GPU的显存都是占满的。 # GPU 1的显存将占满 os.environ["CUDA_VISIBLE_DEVICES"] "1" 原因&#xff1a;默认情况下&#xff0c;tensorflow会把可用的显存全部占光&#…...

STM32--RC522学习记录

一&#xff0c;datasheet阅读记录 1.关于通信格式 2.读寄存器 u8 RC522_ReadReg(u8 address) {u8 addr address;u8 data0x00;addr((addr<<1)&0x7e)|0x80;//将最高位置一表示read&#xff0c;最后一位按照手册建议变为0Spi_Start();//选中从机SPI2_ReadWriteByte(ad…...

函数封装冒泡排序

大家好&#xff1a; 衷心希望各位点赞。 您的问题请留在评论区&#xff0c;我会及时回答。 一、冒泡排序 冒泡排序是最常见的一种排序算法&#xff0c;按照指定顺序比较相邻元素&#xff0c;如果顺序不同&#xff0c;就交换元素位置&#xff0c;每一趟比较&#xff0c;都会导致…...

mysql基础学习

一、DML 介绍&#xff1a;DML(数据操作语言&#xff09;&#xff0c;用来对数据库中表的数据记录进行增删改操作。 1.添加数据 /*给指定字段添加数据*/ insert into user(id, name) values (1,小王); select *from user;/*查询该表的数据*/ /*给所有字段添数据*/ insert int…...

mybatisplus提示:Property ‘mapperLocations‘ was not specified.

1、问题概述&#xff1f; 在使用springboot整么mybatisPlus启动的使用提示信息&#xff1a; Property mapperLocations was not specified. 但是我确实写了相对应的配置&#xff1a; 【在pom文件中配置xml识别】 <resources><resource><directory>src/m…...

【STL源码剖析】【2、空间配置器——allocator】

文章目录 1、什么是空间配置器&#xff1f;1.1设计一个简单的空间配置器&#xff0c;JJ::allocator 2、具备次配置力( sub-allocation)的 SGI 空间配置器2.1 什么是次配置力2.2 SGI标准的空间配置器&#xff0c;std::allocator2.2 SGI特殊的空间配置器&#xff0c;std::alloc2.…...

机器人|逆运动学问题解决方法总结

如是我闻&#xff1a; 解决逆运动学&#xff08;Inverse Kinematics, IK&#xff09;问题的方法多样&#xff0c;各有特点。以下是一个综合概述&#xff1a; 1. 解析法&#xff08;Analytical Solutions&#xff09; 特点&#xff1a;直接使用数学公式计算关节角度&#xff0…...

php搭建websocket

workerman文档&#xff1a;https://www.workerman.net/doc/gateway-worker/unbind-uid.html 1.项目终端执行命令&#xff1a;composer require topthink/think-worker 2.0.x 2.config多出三个配置文件&#xff1a; 3.当使用php think worker:gateway命令时&#xff0c;提示不…...

maven install报错原因揭秘:‘parent.relativePath‘指向错误的本地POM文件

哈喽&#xff0c;大家好&#xff0c;我是木头左&#xff01; 今天我要和大家分享的是关于maven install时报错的一个常见原因&#xff1a;parent.relativePath’指向错误的本地POM文件。这个问题可能会影响到的开发效率&#xff0c;甚至导致项目构建失败。那么&#xff0c;该如…...

数据结构·排序

1. 排序的概念及运用 1.1 排序的概念 排序&#xff1a;排序是将一组“无序”的记录序列&#xff0c;按照某个或某些关键字的大小&#xff0c;递增或递减归零调整为“有序”的记录序列的操作 稳定性&#xff1a;假定在待排序的记录序列中&#xff0c;存在多个具有相同关键字的记…...

Python学习笔记01

第一章、你好Python 初识Python Python的起源 1989年&#xff0c;为了打发圣诞节假期&#xff0c;Gudiovan Rossum吉多范罗苏姆(龟叔)决心开发一个新的解释程序(Python雏形) 1991年&#xff0c;第一个Python解释器诞生 Python这个名字&#xff0c;来自龟叔所挚爱的电视剧M…...

Java学习笔记01

1.1 Java简介 Java的前身是Oak&#xff0c;詹姆斯高斯林是java之父。 1.2 Java体系 Java是一种与平台无关的语言&#xff0c;其源代码可以被编译成一种结构中立的中间文件&#xff08;.class&#xff0c;字节码文件&#xff09;于Java虚拟机上运行。 1.2.3 专有名词 JDK提…...

变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析

一、变量声明设计&#xff1a;let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性&#xff0c;这种设计体现了语言的核心哲学。以下是深度解析&#xff1a; 1.1 设计理念剖析 安全优先原则&#xff1a;默认不可变强制开发者明确声明意图 let x 5; …...

label-studio的使用教程(导入本地路径)

文章目录 1. 准备环境2. 脚本启动2.1 Windows2.2 Linux 3. 安装label-studio机器学习后端3.1 pip安装(推荐)3.2 GitHub仓库安装 4. 后端配置4.1 yolo环境4.2 引入后端模型4.3 修改脚本4.4 启动后端 5. 标注工程5.1 创建工程5.2 配置图片路径5.3 配置工程类型标签5.4 配置模型5.…...

基于距离变化能量开销动态调整的WSN低功耗拓扑控制开销算法matlab仿真

目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.算法仿真参数 5.算法理论概述 6.参考文献 7.完整程序 1.程序功能描述 通过动态调整节点通信的能量开销&#xff0c;平衡网络负载&#xff0c;延长WSN生命周期。具体通过建立基于距离的能量消耗模型&am…...

深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法

深入浅出&#xff1a;JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中&#xff0c;随机数的生成看似简单&#xff0c;却隐藏着许多玄机。无论是生成密码、加密密钥&#xff0c;还是创建安全令牌&#xff0c;随机数的质量直接关系到系统的安全性。Jav…...

全球首个30米分辨率湿地数据集(2000—2022)

数据简介 今天我们分享的数据是全球30米分辨率湿地数据集&#xff0c;包含8种湿地亚类&#xff0c;该数据以0.5X0.5的瓦片存储&#xff0c;我们整理了所有属于中国的瓦片名称与其对应省份&#xff0c;方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...

高危文件识别的常用算法:原理、应用与企业场景

高危文件识别的常用算法&#xff1a;原理、应用与企业场景 高危文件识别旨在检测可能导致安全威胁的文件&#xff0c;如包含恶意代码、敏感数据或欺诈内容的文档&#xff0c;在企业协同办公环境中&#xff08;如Teams、Google Workspace&#xff09;尤为重要。结合大模型技术&…...

【Java_EE】Spring MVC

目录 Spring Web MVC ​编辑注解 RestController RequestMapping RequestParam RequestParam RequestBody PathVariable RequestPart 参数传递 注意事项 ​编辑参数重命名 RequestParam ​编辑​编辑传递集合 RequestParam 传递JSON数据 ​编辑RequestBody ​…...

selenium学习实战【Python爬虫】

selenium学习实战【Python爬虫】 文章目录 selenium学习实战【Python爬虫】一、声明二、学习目标三、安装依赖3.1 安装selenium库3.2 安装浏览器驱动3.2.1 查看Edge版本3.2.2 驱动安装 四、代码讲解4.1 配置浏览器4.2 加载更多4.3 寻找内容4.4 完整代码 五、报告文件爬取5.1 提…...

基于matlab策略迭代和值迭代法的动态规划

经典的基于策略迭代和值迭代法的动态规划matlab代码&#xff0c;实现机器人的最优运输 Dynamic-Programming-master/Environment.pdf , 104724 Dynamic-Programming-master/README.md , 506 Dynamic-Programming-master/generalizedPolicyIteration.m , 1970 Dynamic-Programm…...

Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信

文章目录 Linux C语言网络编程详细入门教程&#xff1a;如何一步步实现TCP服务端与客户端通信前言一、网络通信基础概念二、服务端与客户端的完整流程图解三、每一步的详细讲解和代码示例1. 创建Socket&#xff08;服务端和客户端都要&#xff09;2. 绑定本地地址和端口&#x…...