当前位置: 首页 > news >正文

数学分析复习:无穷乘积

文章目录

  • 无穷乘积
    • 定义:无穷乘积的收敛性
    • 命题:无穷乘积的Cauchy收敛准则
    • 正项级数和无穷乘积的联系

本篇文章适合个人复习翻阅,不建议新手入门使用

无穷乘积

设复数列 { a n } n ≥ 1 \{a_n\}_{n\geq 1} {an}n1,设对任意 n , a n ≠ 0 n,a_n\neq 0 n,an=0,称 ∏ n ≥ 1 a n \prod\limits_{n\geq 1}a_n n1an 为无穷乘积,称 P n = a 1 ⋅ a 2 ⋯ a n P_n=a_1\cdot a_2\cdots a_n Pn=a1a2an 为部分积

定义:无穷乘积的收敛性

若数列 { P n } n ≥ 1 \{P_n\}_{n\geq 1} {Pn}n1 的极限存在且不为 0 ,则称无穷乘积 ∏ n ≥ 1 a n \prod\limits_{n\geq 1}a_n n1an 收敛,记 ∏ n ≥ 1 a n = lim ⁡ n → ∞ P n \prod\limits_{n\geq 1}a_n=\lim\limits_{n\to\infty}P_n n1an=nlimPn

命题:无穷乘积的Cauchy收敛准则

∏ n ≥ 1 a n \prod\limits_{n\geq 1}a_n n1an 收敛当且仅当对任意 ε > 0 \varepsilon>0 ε>0,存在 N N N ,使得对任意的 n ≥ N n\geq N nN,任意 p ≥ 0 p\geq 0 p0,都有
∣ a n ⋅ a n + 1 ⋯ a n + p − 1 ∣ < ε |a_n\cdot a_{n+1}\cdots a_{n+p}-1|<\varepsilon anan+1an+p1∣<ε

证明思路
必要性:类似实数列的Cauchy收敛准则的证明方法
充分性:只需证 { P n } \{P_n\} {Pn} 是 Cauchy 列(需要先证序列有界),且 lim ⁡ n → ∞ P n ≠ 0 \lim\limits_{n\to\infty}P_n\neq 0 nlimPn=0

正项级数和无穷乘积的联系

命题1

{ a n } n ≥ 1 \{a_n\}_{n\geq 1} {an}n1 是正数的数列,则下列等价

  • ∏ n ≥ 1 ( 1 + a n ) \prod\limits_{n\geq 1}(1+a_n) n1(1+an) 收敛
  • ∑ n = 1 ∞ a n \sum\limits_{n=1}^{\infty}a_n n=1an 收敛

证明思路:
(1)推(2): ∑ n = 1 k a n ≤ ∏ n = 1 k ( 1 + a n ) ≤ ∏ n = 1 ∞ ( 1 + a n ) \sum\limits_{n=1}^ka_n\leq \prod\limits_{n=1}^k(1+a_n)\leq \prod\limits_{n=1}^{\infty}(1+a_n) n=1kann=1k(1+an)n=1(1+an)单调有界数列必收敛
(2)推(1): ∏ n = 1 k ( 1 + a n ) ≤ ∏ n = 1 k e a k ≤ e x p ( ∑ n = 1 k a n ) ≤ e x p ( ∑ n = 1 ∞ a n ) \prod\limits_{n=1}^k(1+a_n)\leq \prod\limits_{n=1}^ke^{a_k}\leq exp(\sum\limits_{n=1}^ka_n)\leq exp(\sum\limits_{n=1}^{\infty}a_n) n=1k(1+an)n=1keakexp(n=1kan)exp(n=1an)单调有界数列必收敛

推论
设复数列 { a n } n ≥ 1 \{a_n\}_{n\geq 1} {an}n1 ,若 ∏ n = 1 ∞ ( 1 + ∣ a n ∣ ) \prod\limits_{n=1}^{\infty}(1+|a_n|) n=1(1+an) 收敛,则 ∏ n = 1 ∞ ( 1 + a n ) \prod\limits_{n=1}^{\infty}(1+a_n) n=1(1+an) 收敛。特别地,若 ∑ n = 1 ∞ a n \sum\limits_{n=1}^{\infty}a_n n=1an 绝对收敛,则 ∏ n = 1 ∞ ( 1 + a n ) \prod\limits_{n=1}^{\infty}(1+a_n) n=1(1+an) 收敛

证明思路
只需注意到 ∣ ∏ n = k k + p ( 1 + a n ) − 1 ∣ ≤ ∏ n = k k + p ( 1 + ∣ a n ∣ ) − 1 |\prod_{n=k}^{k+p}(1+a_n)-1|\leq \prod_{n=k}^{k+p}(1+|a_n|)-1 n=kk+p(1+an)1∣n=kk+p(1+an)1

命题2
设数列 { a n } \{a_n\} {an} 满足 0 < a n < 1 0<a_n<1 0<an<1,则 ∏ n = 1 ∞ ( 1 − a n ) \prod\limits_{n=1}^{\infty}(1-a_n) n=1(1an) 收敛当且仅当 ∑ n = 1 ∞ a n \sum\limits_{n=1}^{\infty}a_n n=1an 收敛

证明
充分性显然
必要性:用反证法
( 1 − a 1 ) ⋯ ( 1 − a n ) ≤ 1 ( 1 + a 1 ) ⋯ ( 1 + a n ) ≤ 1 1 + a 1 + ⋯ + a n → 0 \begin{split} (1-a_1)\cdots(1-a_n)&\leq \frac{1}{(1+a_1)\cdots(1+a_n)}\\ &\leq \frac{1}{1+a_1+\cdots+a_n}\to 0 \end{split} (1a1)(1an)(1+a1)(1+an)11+a1++an10从而 ∏ n = 1 ∞ ( 1 − a n ) = 0 \prod_{n=1}^{\infty}(1-a_n)=0 n=1(1an)=0 ,矛盾

参考书:

  • 《数学分析之课程讲义》清华大学数学系及丘成桐数学中心
  • 《数学分析习题课讲义》谢惠民 恽自求 易法槐 钱定边 著

相关文章:

数学分析复习:无穷乘积

文章目录 无穷乘积定义&#xff1a;无穷乘积的收敛性命题&#xff1a;无穷乘积的Cauchy收敛准则正项级数和无穷乘积的联系 本篇文章适合个人复习翻阅&#xff0c;不建议新手入门使用 无穷乘积 设复数列 { a n } n ≥ 1 \{a_n\}_{n\geq 1} {an​}n≥1​&#xff0c;设对任意 …...

02 React 组件使用

import React, { useState } from react;// 定义一个简单的函数式组件 function Counter() {// 使用 useState hook 来创建一个状态变量 count&#xff0c;并提供修改该状态的函数 setCountconst [count, setCount] useState(0);// 在点击按钮时增加计数器的值const increment…...

你就是上帝

你就是上帝&#xff1a;Jv程序员&#xff0c;请你站在上帝或神的角度 1.万物皆有裂缝 按照西方文化&#xff08;宗教神话&#xff0c;古希腊、古罗马等&#xff09;&#xff0c;上帝创建了人&#xff1b; 创建人之前&#xff0c;还创建了人的居所或地盘/栖息地&#xff08;伊…...

Spring Cloud: openFegin使用

文章目录 一、OpenFeign简介二、Springboot集成OpenFeign1、引入依赖2、EnableFeignClients注解&#xff08;1&#xff09;应用&#xff08;2&#xff09;属性解析 3、 FeignClient&#xff08;1&#xff09;应用&#xff08;2&#xff09;属性解析&#xff08;3&#xff09;向…...

流畅的 Python 第二版(GPT 重译)(二)

第三章&#xff1a;字典和集合 Python 基本上是用大量语法糖包装的字典。 Lalo Martins&#xff0c;早期数字游牧民和 Pythonista 我们在所有的 Python 程序中都使用字典。即使不是直接在我们的代码中&#xff0c;也是间接的&#xff0c;因为dict类型是 Python 实现的基本部分。…...

Flutter 旋转动画 线性变化的旋转动画

直接上代码 图片自己添加一张就好了 import dart:math;import package:flutter/material.dart;import package:flutter/animation.dart;void main() > runApp(MyApp()); //旋转动画 class MyApp extends StatelessWidget {overrideWidget build(BuildContext context) {re…...

【Web应用技术基础】HTML(5)——案例1:展示简历信息

样式&#xff1a; 代码&#xff1a; <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>展示简历信息…...

ethers.js:wallet(创建钱包,导入助记词,导入私钥)

Wallet Wallet类继承了Signer,可以使用私钥作为外部拥有帐户(EOA)的标准对交易和消息进行签名。 npm install ethers@5.4.0// 引入 import {ethers } from ethers创建新钱包 this.provider = new ethers.providers.Web3Provider(window...

面试笔记——Java集合篇

Java集合框架体系 重点&#xff1a;单列集合——ArrayList、LinkedList&#xff1b;双列集合——HashMap、ConcurrentHashMap。 List相关 数组&#xff08;Array&#xff09; 是一种用连续的内存空间存储相同数据类型数据的线性数据结构。 数组获取其他元素&#xff1a; 为什…...

在 IntelliJ IDEA 中使用 Terminal 执行 git log 命令后的退出方法

前言 IntelliJ IDEA 是一款广受欢迎的集成开发环境&#xff0c;它内置了强大的终端工具&#xff0c;使得开发者无需离开IDE就能便捷地执行各种命令行操作&#xff0c;包括使用 Git 进行版本控制。在 IDEA 的 Terminal 中执行 git log 命令时&#xff0c;由于该命令会显示项目的…...

架构整洁之道-读书总结

1 概述 1.1 关于本书 《架构整洁之道》&#xff08;Clean Architecture: A Craftsman’s Guide to Software Structure and Design&#xff09;是由著名的软件工程师Robert C. Martin&#xff08;又称为Uncle Bob&#xff09;所著。这本书提供了软件开发和架构设计的指导原则…...

蓝桥杯学习笔记(贪心)

在很久很久以前&#xff0c;有几个部落居住在平原上&#xff0c;依次编号为1到n。第之个部落的人数为 t 有一年发生了灾荒&#xff0c;年轻的政治家小蓝想要说服所有部落一同应对灾荒&#xff0c;他能通过谈判来说服部落进行联台。 每次谈判&#xff0c;小蓝只能邀请两个部落参…...

【无标题】如何使用 MuLogin 设置代理

如何使用 MuLogin 设置代理 使用 MuLogin 浏览器设置我们的代理&#xff0c;轻松管理多个社交媒体或电子商务帐户。 什么是MuLogin&#xff1f; MuLogin 是一款虚拟反检测浏览器&#xff0c;使用户能够管理多个电子商务、社交媒体和广告帐户&#xff0c;而无需验证码或 IP 禁…...

芒果YOLOv8改进135:主干篇GCNet,统一为全局上下文建模global context结构,即插即用,助力小目标检测,轻量化的同时精度性能涨点

该专栏完整目录链接: 芒果YOLOv8深度改进教程 芒果专栏 基于 GCNet 的改进结构,改进源码教程 | 详情如下🥇 💡本博客 改进源代码改进 适用于 YOLOv8 按步骤操作运行改进后的代码即可 即插即用 结构。博客 包括改进所需的 核心结构代码 文件 论文:https://arxiv.org/a…...

全面:vue.config.js 的完整配置

vue.config.js是Vue项目的配置文件&#xff0c;用于配置项目的构建、打包和开发环境等。 在Vue CLI 3.0之后&#xff0c;项目的配置文件从原来的build和config目录下的多个配置文件&#xff0c;合并成了一个vue.config.js文件。这个文件可以放在项目的根目录下&#xff0c;用于…...

海量数据处理项目-账号微服务注册Nacos+配置文件增加

海量数据处理项目-账号微服务注册Nacos配置文件增加 导入生成好的代码 model (为啥不放common项目&#xff0c;如果是确定每个服务都用到的依赖或者类才放到common项目) mapper 类接口拷贝 resource/mapper文件夹 xml脚本拷贝 controller service 不拷贝 Mybatis plus配置控制…...

DNS 服务 Unbound 部署最佳实践

文章目录 安装unbound-control配置启动服务测试 参考&#xff1a; 官网地址&#xff1a;https://nlnetlabs.nl/projects/unbound/about/ 详细文档&#xff1a;https://unbound.docs.nlnetlabs.nl/en/latest/index.html DNS服务Unbound部署于使用 https://cloud.tencent.com/…...

力扣HOT100 - 42. 接雨水

解题思路&#xff1a; 动态规划 感觉不是很好想 class Solution {public int trap(int[] height) {int n height.length;if (n 0) return 0;int[] leftMax new int[n];leftMax[0] height[0];for (int i 1; i < n; i) {leftMax[i] Math.max(leftMax[i - 1], height[i…...

攻防世界-baby_web

题目信息 相关知识 使用bp进行抓包 解题过程 题目界面如下所示: 试图找index界面&#xff1a; 发现又跳转到http://61.147.171.105:51201/1.php页面&#xff0c;因此说明61.147.171.105:51201/index.php是存在的&#xff08;因为笔者试了&#xff0c;不存在的页面会直接报…...

数据可视化基础与应用-04-seaborn库从入门到精通01-02

总结 本系列是数据可视化基础与应用的第04篇seaborn&#xff0c;是seaborn从入门到精通系列第1-2篇。本系列的目的是可以完整的完成seaborn从入门到精通。主要介绍基于seaborn实现数据可视化。 参考 参考:数据可视化-seaborn seaborn从入门到精通01-seaborn介绍与load_datas…...

Android Wi-Fi 连接失败日志分析

1. Android wifi 关键日志总结 (1) Wi-Fi 断开 (CTRL-EVENT-DISCONNECTED reason3) 日志相关部分&#xff1a; 06-05 10:48:40.987 943 943 I wpa_supplicant: wlan0: CTRL-EVENT-DISCONNECTED bssid44:9b:c1:57:a8:90 reason3 locally_generated1解析&#xff1a; CTR…...

【OSG学习笔记】Day 18: 碰撞检测与物理交互

物理引擎&#xff08;Physics Engine&#xff09; 物理引擎 是一种通过计算机模拟物理规律&#xff08;如力学、碰撞、重力、流体动力学等&#xff09;的软件工具或库。 它的核心目标是在虚拟环境中逼真地模拟物体的运动和交互&#xff0c;广泛应用于 游戏开发、动画制作、虚…...

Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以?

Golang 面试经典题&#xff1a;map 的 key 可以是什么类型&#xff1f;哪些不可以&#xff1f; 在 Golang 的面试中&#xff0c;map 类型的使用是一个常见的考点&#xff0c;其中对 key 类型的合法性 是一道常被提及的基础却很容易被忽视的问题。本文将带你深入理解 Golang 中…...

大型活动交通拥堵治理的视觉算法应用

大型活动下智慧交通的视觉分析应用 一、背景与挑战 大型活动&#xff08;如演唱会、马拉松赛事、高考中考等&#xff09;期间&#xff0c;城市交通面临瞬时人流车流激增、传统摄像头模糊、交通拥堵识别滞后等问题。以演唱会为例&#xff0c;暖城商圈曾因观众集中离场导致周边…...

关于iview组件中使用 table , 绑定序号分页后序号从1开始的解决方案

问题描述&#xff1a;iview使用table 中type: "index",分页之后 &#xff0c;索引还是从1开始&#xff0c;试过绑定后台返回数据的id, 这种方法可行&#xff0c;就是后台返回数据的每个页面id都不完全是按照从1开始的升序&#xff0c;因此百度了下&#xff0c;找到了…...

Linux云原生安全:零信任架构与机密计算

Linux云原生安全&#xff1a;零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言&#xff1a;云原生安全的范式革命 随着云原生技术的普及&#xff0c;安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测&#xff0c;到2025年&#xff0c;零信任架构将成为超…...

Python爬虫(一):爬虫伪装

一、网站防爬机制概述 在当今互联网环境中&#xff0c;具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类&#xff1a; 身份验证机制&#xff1a;直接将未经授权的爬虫阻挡在外反爬技术体系&#xff1a;通过各种技术手段增加爬虫获取数据的难度…...

C# SqlSugar:依赖注入与仓储模式实践

C# SqlSugar&#xff1a;依赖注入与仓储模式实践 在 C# 的应用开发中&#xff0c;数据库操作是必不可少的环节。为了让数据访问层更加简洁、高效且易于维护&#xff0c;许多开发者会选择成熟的 ORM&#xff08;对象关系映射&#xff09;框架&#xff0c;SqlSugar 就是其中备受…...

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...

是否存在路径(FIFOBB算法)

题目描述 一个具有 n 个顶点e条边的无向图&#xff0c;该图顶点的编号依次为0到n-1且不存在顶点与自身相连的边。请使用FIFOBB算法编写程序&#xff0c;确定是否存在从顶点 source到顶点 destination的路径。 输入 第一行两个整数&#xff0c;分别表示n 和 e 的值&#xff08;1…...