当前位置: 首页 > news >正文

数学分析复习:振荡型级数的收敛判别

文章目录

  • 振荡型级数的收敛判别

本篇文章适合个人复习翻阅,不建议新手入门使用

振荡型级数的收敛判别

直观上,振荡型级数说的是级数各项有正有负,求和的时候可以相互抵消,故可能收敛

命题:Abel求和公式
设复数列 { a k } k ≥ 1 \{a_k\}_{k\geq 1} {ak}k1 { b k } k ≥ 1 \{b_k\}_{k\geq 1} {bk}k1,则
∑ k = 1 n a k b k = S n b n + ∑ k = 1 n − 1 S k ( b k − b k + 1 ) \sum\limits_{k=1}^na_kb_k=S_nb_n+\sum\limits_{k=1}^{n-1}S_k(b_k-b_{k+1}) k=1nakbk=Snbn+k=1n1Sk(bkbk+1)
其中 S n = ∑ k = 1 n a k S_n=\sum\limits_{k=1}^na_k Sn=k=1nak 表示部分和

证明
只需将 a k a_k ak 替换为 S k − S k − 1 S_k-S_{k-1} SkSk1,然后合并同类项即可

注:该公式即为离散版本的分部积分公式

命题:Dirichlet判别法
设实数列 { a k } , { b k } \{a_k\},\{b_k\} {ak},{bk} S n S_n Sn 表示 { a k } \{a_k\} {ak} 的部分和,若

  1. { b k } \{b_k\} {bk} 是单调数列且 lim ⁡ k → ∞ b k = 0 \lim\limits_{k\to\infty}b_k=0 klimbk=0
  2. 存在 M M M,使得对任意 n ≥ 1 n\geq 1 n1 ∣ S n ∣ ≤ M |S_n|\leq M SnM

则级数 ∑ k = 1 a k b k \sum\limits_{k=1}^{a_kb_k} k=1akbk 收敛

证明思路(级数的Cauchy收敛准则)
不妨假设 { b k } \{b_k\} {bk} 单调递减,由 abel 求和法,任取 m ≥ n m\geq n mn,有
∣ ∑ k = n + 1 m a k b k ∣ = ∣ ( S m b m − S n b n ) + ∑ k = n m − 1 S k ( b k − b k + 1 ) ∣ ≤ M ∣ b m − b n ∣ + ∣ M ∣ ∣ ∑ k = n m − 1 ( b k − b k + 1 ) ∣ = 2 M ( b n − b m ) < ε \begin{split} |\sum\limits_{k=n+1}^ma_kb_k|&=|(S_mb_m-S_nb_n)+\sum\limits_{k=n}^{m-1}S_k(b_k-b_{k+1})|\\ &\leq M|b_m-b_n|+|M||\sum\limits_{k=n}^{m-1}(b_k-b_{k+1})|\\ &=2M(b_n-b_m)<\varepsilon \end{split} k=n+1makbk=(SmbmSnbn)+k=nm1Sk(bkbk+1)Mbmbn+M∣∣k=nm1(bkbk+1)=2M(bnbm)<ε

推论:Abel判别法
设实数列 { a k } , { b k } \{a_k\},\{b_k\} {ak},{bk},若

  1. { b k } \{b_k\} {bk} 单调有界
  2. 级数 ∑ k = 1 ∞ a k \sum\limits_{k=1}^{\infty}a_k k=1ak 收敛

则级数 ∑ k = 1 ∞ a k b k \sum\limits_{k=1}^{\infty}a_kb_k k=1akbk 收敛

证明思路
b = lim ⁡ k → ∞ b k b=\lim\limits_{k\to\infty}b_k b=klimbk,则有
∑ k = 1 ∞ a k b k = ∑ k = 1 ∞ a k ( b k − b ) + b ∑ k = 1 ∞ a k \sum\limits_{k=1}^{\infty}a_kb_k=\sum\limits_{k=1}^{\infty}a_k(b_k-b)+b\sum\limits_{k=1}^{\infty}a_k k=1akbk=k=1ak(bkb)+bk=1ak
等号右端第一个级数用Dirichlet判别法立得

参考书:

  • 《数学分析之课程讲义》清华大学数学系及丘成桐数学中心
  • 《数学分析习题课讲义》谢惠民 恽自求 易法槐 钱定边 著

相关文章:

数学分析复习:振荡型级数的收敛判别

文章目录 振荡型级数的收敛判别 本篇文章适合个人复习翻阅&#xff0c;不建议新手入门使用 振荡型级数的收敛判别 直观上&#xff0c;振荡型级数说的是级数各项有正有负&#xff0c;求和的时候可以相互抵消&#xff0c;故可能收敛 命题&#xff1a;Abel求和公式 设复数列 { …...

阿里CICD流水线Docker部署,将阿里镜像私仓中的镜像部署到服务器中

文章目录 阿里CICD流水线Docker部署&#xff0c;将阿里镜像私仓中的镜像部署到服务器中一、CICD流水线的初步使用可以看我之前的两篇文章二、添加部署任务&#xff0c;进行Docker部署&#xff0c;创建一个阿里的试用主机1、选择主机部署&#xff0c;并添加服务主机2、创建免费体…...

并发VS并行

参考文章 面试必考的&#xff1a;并发和并行有什么区别&#xff1f; 并发&#xff1a;一个人同时做多件事&#xff08;射击游戏队友抢装备&#xff09; 并行&#xff1a;多人同时处理同一件事&#xff08;射击游戏敌人同时射击对方&#xff09;...

C语言经典例题(8) --- 进制A+B、网购、及格分数、最高分数、计算一元二次方程

文章目录 1.进制AB2.网购3.及格分数4.最高分数5.计算一元二次方程 1.进制AB 题目描述&#xff1a; 输入一个十六进制数a&#xff0c;和一个八进制数b&#xff0c;输出ab的十进制结果&#xff08;范围-231~231-1&#xff09;。 输入描述&#xff1a; 一行&#xff0c;一个十六…...

两区域二次调频风火机组,麻雀启发式算法改进simulink与matlab联合

区域1结果 区域2结果 红色曲线为优化后结果〔风火机组二次调频〕...

自动驾驶国际标准ISO文件

Coordinate system&#xff1a;Road vehicles — Vehicle dynamics and road-holding ability — Vocabulary...

【数据结构】双向奔赴的爱恋 --- 双向链表

关注小庄 顿顿解馋๑ᵒᯅᵒ๑ 引言&#xff1a;上回我们讲解了单链表(单向不循环不带头链表)&#xff0c;我们可以发现他是存在一定缺陷的&#xff0c;比如尾删的时候需要遍历一遍链表&#xff0c;这会大大降低我们的性能&#xff0c;再比如对于链表中的一个结点我们是无法直接…...

【Redis】高频面试题

提供五种常见的数据类型&#xff1a;String&#xff08;字符串&#xff09;&#xff0c;Hash&#xff08;哈希&#xff09;&#xff0c;List&#xff08;列表&#xff09;&#xff0c;Set&#xff08;集合&#xff09;、Zset&#xff08;有序集合&#xff09; 文章目录 1、为什…...

数据分析基础

数据分析基础 1. 数据加载 使用 Pandas 库可以轻松地加载各种格式的数据&#xff0c;如 CSV、Excel、JSON 等。 import pandas as pd# 从 CSV 文件加载数据 data pd.read_csv(‘data.csv’). 2. 数据探索 一旦数据加载完成&#xff0c;我们可以开始对数据进行探索性分析&a…...

ffmpeg把一个平面视频,做成左右平面视频

要使用FFmpeg将单个平面视频转换为左右&#xff08;或称为并排&#xff09;3D格式的视频&#xff0c;你可以使用FFmpeg的filter_complex功能来实现。这种类型的视频通常用于3D视觉效果&#xff0c;其中同一画面的两个版本并排放置&#xff0c;每个版本略有不同的视角&#xff0…...

Docker搭建LNMP环境实战(02):Win10下安装VMware

实战开始&#xff0c;先安装 VMware 虚拟机。话不多说&#xff0c;上手就干&#xff01; 1、基本环境检查 1.1、本机Bios是否支持虚拟化 进入&#xff1a;任务管理器- 性能&#xff0c;查看“虚拟化”是否启用&#xff0c;如果已启用&#xff0c;则满足要求&#xff0c;如果未…...

苍穹外卖笔记

苍穹外卖 DAY01nginx反向代理MD5加密yapi进行接口导入Swagger介绍 DAY02新增员工需求分析和设计写相关代码测试(1. 后端文档测试 2. 前后端联调代码完善 员工分页查询DAY01 02涉及到的知识 DAY03阿里云OSS事务注解 Transactional DAY01 nginx反向代理 MD5加密 拓展&#xff1…...

[医学分割大模型系列] (3) SAM-Med3D 分割大模型详解

[医学分割大模型系列] -3- SAM-Med3D 分割大模型解析 1. 特点2. 背景3. 训练数据集3.1 数据集收集3.2 数据清洗3.3 模型微调数据集 4. 模型结构4.1 3D Image Encoder4.2 3D Prompt Encoder4.3 3D mask Decoder4.4 模型权重 5. 评估5.1 评估数据集5.2 Quantitative Evaluation5.…...

【React】React中将 Props 传递给组件

当使用 React 时&#xff0c;props 是组件之间传递数据的主要方式。以下是针对您提到的五个问题的详细解答&#xff1a; 1. 如何向组件传递 props 在父组件中&#xff0c;你可以通过组件标签的属性&#xff08;attributes&#xff09;将 props 传递给子组件。这些属性在子组件…...

JOL工具查看java对象布局

JOL&#xff08;Java Object Layout&#xff09;是一个用于分析Java对象在Java虚拟机&#xff08;JVM&#xff09;中内存布局的小工具包。以下是如何使用JOL查看Java对象布局的步骤示例&#xff1a; Maven项目中添加依赖&#xff1a; 首先&#xff0c;在Maven项目中引入JOL工…...

Rust 实战练习 - 3. 文件系统,权限,读写,路径组合,time

目标: 文件系统&#xff0c;遍历目录路径的使用权限和文件属性时间time use std::{env, fmt::Debug, os::unix::fs::{MetadataExt, PermissionsExt}, path::{Path, PathBuf}, time::SystemTime};fn main() {// 时间处理// 除Duration和SystemTime外&#xff0c;标准库没有时间…...

既有理论深度又有技术细节——深度学习计算机视觉

推荐序 我曾经试图找到一本既有理论深度、知识广度&#xff0c;又有技术细节、数学原理的关于深度学习的书籍&#xff0c;供自己学习&#xff0c;也推荐给我的学生学习。虽浏览文献无数&#xff0c;但一直没有心仪的目标。两周前&#xff0c;刘升容女士将她的译作《深度学习计…...

Flink Temporal Join 系列 (2):用 Temporal Table DDL 实现基于处理时间的关联

本文要演示的是:使用 Temporal Table DDL 定义被关联表(维表),然后基于主动关联表(事实表)的“处理时间”去进行Temporal Join(关联时间维度上对应版本的维表数据)。该演示涉及三个要点: 被关联的表(维表)是用 Temporal Table DDL 形式定义,必须是一张时态表(版本…...

eclipse中使用PlantUML plugin查看对象关系

一.背景 公司安排的带徒弟任务&#xff0c;给徒弟讲了如何设计对象。他们的思维里面都是单表增删改查&#xff0c;我的脑海都是一个个对象&#xff0c;他们相互关系、各有特色本事。稳定的结构既能满足外部功能需求&#xff0c;又能在需求变更时以最小代价响应。最大程度的记录…...

HCIP的学习(4)

GRE和MGRE VPN---虚拟专用网络。指依靠ISP&#xff08;运营商&#xff09;或其他公有网络基础设施上构建的专用的安全数据通信网络。该网络是属于逻辑上的。​ 核心机制—隧道机制&#xff08;封装技术&#xff09; GRE—通用路由封装 ​ 三层隧道技术&#xff0c;并且是属于…...

JavaSec-RCE

简介 RCE(Remote Code Execution)&#xff0c;可以分为:命令注入(Command Injection)、代码注入(Code Injection) 代码注入 1.漏洞场景&#xff1a;Groovy代码注入 Groovy是一种基于JVM的动态语言&#xff0c;语法简洁&#xff0c;支持闭包、动态类型和Java互操作性&#xff0c…...

Mybatis逆向工程,动态创建实体类、条件扩展类、Mapper接口、Mapper.xml映射文件

今天呢&#xff0c;博主的学习进度也是步入了Java Mybatis 框架&#xff0c;目前正在逐步杨帆旗航。 那么接下来就给大家出一期有关 Mybatis 逆向工程的教学&#xff0c;希望能对大家有所帮助&#xff0c;也特别欢迎大家指点不足之处&#xff0c;小生很乐意接受正确的建议&…...

前端导出带有合并单元格的列表

// 导出async function exportExcel(fileName "共识调整.xlsx") {// 所有数据const exportData await getAllMainData();// 表头内容let fitstTitleList [];const secondTitleList [];allColumns.value.forEach(column > {if (!column.children) {fitstTitleL…...

NXP S32K146 T-Box 携手 SD NAND(贴片式TF卡):驱动汽车智能革新的黄金组合

在汽车智能化的汹涌浪潮中&#xff0c;车辆不再仅仅是传统的交通工具&#xff0c;而是逐步演变为高度智能的移动终端。这一转变的核心支撑&#xff0c;来自于车内关键技术的深度融合与协同创新。车载远程信息处理盒&#xff08;T-Box&#xff09;方案&#xff1a;NXP S32K146 与…...

Java毕业设计:WML信息查询与后端信息发布系统开发

JAVAWML信息查询与后端信息发布系统实现 一、系统概述 本系统基于Java和WML(无线标记语言)技术开发&#xff0c;实现了移动设备上的信息查询与后端信息发布功能。系统采用B/S架构&#xff0c;服务器端使用Java Servlet处理请求&#xff0c;数据库采用MySQL存储信息&#xff0…...

2025年渗透测试面试题总结-腾讯[实习]科恩实验室-安全工程师(题目+回答)

安全领域各种资源&#xff0c;学习文档&#xff0c;以及工具分享、前沿信息分享、POC、EXP分享。不定期分享各种好玩的项目及好用的工具&#xff0c;欢迎关注。 目录 腾讯[实习]科恩实验室-安全工程师 一、网络与协议 1. TCP三次握手 2. SYN扫描原理 3. HTTPS证书机制 二…...

【Linux】Linux 系统默认的目录及作用说明

博主介绍&#xff1a;✌全网粉丝23W&#xff0c;CSDN博客专家、Java领域优质创作者&#xff0c;掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域✌ 技术范围&#xff1a;SpringBoot、SpringCloud、Vue、SSM、HTML、Nodejs、Python、MySQL、PostgreSQL、大数据、物…...

MySQL 8.0 事务全面讲解

以下是一个结合两次回答的 MySQL 8.0 事务全面讲解&#xff0c;涵盖了事务的核心概念、操作示例、失败回滚、隔离级别、事务性 DDL 和 XA 事务等内容&#xff0c;并修正了查看隔离级别的命令。 MySQL 8.0 事务全面讲解 一、事务的核心概念&#xff08;ACID&#xff09; 事务是…...

Spring AI Chat Memory 实战指南:Local 与 JDBC 存储集成

一个面向 Java 开发者的 Sring-Ai 示例工程项目&#xff0c;该项目是一个 Spring AI 快速入门的样例工程项目&#xff0c;旨在通过一些小的案例展示 Spring AI 框架的核心功能和使用方法。 项目采用模块化设计&#xff0c;每个模块都专注于特定的功能领域&#xff0c;便于学习和…...

mac:大模型系列测试

0 MAC 前几天经过学生优惠以及国补17K入手了mac studio,然后这两天亲自测试其模型行运用能力如何&#xff0c;是否支持微调、推理速度等能力。下面进入正文。 1 mac 与 unsloth 按照下面的进行安装以及测试&#xff0c;是可以跑通文章里面的代码。训练速度也是很快的。 注意…...