【机器学习之---数学】马尔科夫链
every blog every motto: You can do more than you think.
https://blog.csdn.net/weixin_39190382?type=blog
0. 前言
马尔科夫

1. 概念
1.1 引言
马尔可夫链在许多领域都有应用,包括物理学、生物学、工程学、经济学和计算机科学等。在计算机科学中,特别是在算法设计、复杂性理论、网络科学和人工智能等领域,马尔可夫链是一个基本的概念。
马尔可夫链是随机过程 这门课程中的一部分。简单来说,随机过程就是使用统计模型一些事物的过程进行预测和处理 ,比如股价预测通过今天股票的涨跌,却预测明天后天股票的涨跌;天气预报通过今天是否下雨,预测明天后天是否下雨。这些过程都是可以通过数学公式进行量化计算的。通过下雨、股票涨跌的概率,用公式就可以推导出来 N 天后的状况。
它是一个离散时间随机过程,其中系统的下一个状态只依赖于当前状态,与过去的状态无关。这种“无后效性”(无记忆性)是马尔可夫链的核心特性(马尔科夫性)。
1.2 马尔可夫过程和马尔科夫链
其中,涉及两个概念,马尔科夫过程和马尔科夫链。
马尔科夫过程:
- 是一个随机过程,其特点是系统未来的状态仅依赖于当前状态,与过去的状态无关。
- 它可以在任何时间点定义,并可以在连续或离散的时间框架下进行。
- 马尔科夫过程可以是连续状态的,也可以是离散状态的。
马尔科夫链:
- 是一种特殊的马尔科夫过程,它通常描述的是离散时间序列上的状态转移。
- 它由一系列离散状态组成,每个状态之间的转移遵循马尔科夫性质,即仅依赖于当前状态。
- 马尔科夫链通常用转移概率矩阵来描述,这些概率表示在当前时间步从一个状态转移到另一个状态的概率。
简而言之,所有马尔科夫链都是马尔科夫过程,但不是所有马尔科夫过程都是马尔科夫链。 马尔科夫链是马尔科夫过程在离散时间框架下的一个具体实现。在实际应用中,特别是在计算机科学和工程学中,马尔科夫链的概念更为常见,因为它易于建模和分析。而马尔科夫过程的概念更加广泛,包括连续时间马尔科夫过程和更复杂的结构。

1.3 数学定义
有序列状态: . . . X t − 2 , X t − 1 , X t , X t − 1 , . . . ...X_{t-2},X_{t-1},X_t,X_{t-1},... ...Xt−2,Xt−1,Xt,Xt−1,...,那么 X t − 1 X_{t-1} Xt−1时刻的状态,只与 X t − 1 X_{t-1} Xt−1时刻的状态有关,与 X t − 2 X_{t-2} Xt−2时刻的状态无关。
P ( X t + 1 ∣ . . . X t − 2 , X t − 1 , X t , . . . ) = P ( X t + 1 ∣ X t ) P(X_{t+1}|...X_{t-2},X_{t-1},X_t,...) = P(X_{t+1}|X_t) P(Xt+1∣...Xt−2,Xt−1,Xt,...)=P(Xt+1∣Xt)
既然某一时刻状态转移的概率只依赖于它的前一个状态 ,那么我们只要能求出系统中任意两个状态之间的转换概率,这个马尔科夫链的模型就定了。
通过马尔科夫链的模型转换,我们可以将事件的状态转换成概率矩阵 (又称状态分布矩阵 ),如下例:

其转移概率矩阵为:

有了状态转移矩阵以后,我们就可以很方便的计算n步以后在A和B的概率了。
1.4 性质
1.4.1 稳态分布
状态转移矩阵有一个非常重要的特性,经过一定有限次数序列的转换,最终一定可以得到一个稳定的概率分布 ,且与初始状态概率分布无关。

若,计算n天以后再g点的概率,则有:
$$
P_g{X_n = g} = (P^n)_{gg} \
P_b{ X_n=g } = (P^n)_{bg} \
$$
下表是n天以后在g点的概率:

我们发现马尔科夫链会“忘记”初始状态(无记忆性), 最终会收敛到稳定概率分布。
2. 应用
自然语音处理研究让机器“听懂”人类的语言,马尔科夫模型就解决了:
语言模型:N-Gram 是一种简单有效的语言模型,基于独立输入假设:第 n 个词的出现只与前面 N-1 个词相关,而与其它任何词都不相关 。整句出现的概率就是各个词出现概率的乘积。这些概率可以通过直接从语料中统计 N 个词同时出现的次数得到。

参考
- https://zhuanlan.zhihu.com/p/448575579
- https://zhuanlan.zhihu.com/p/489239366
- https://blog.csdn.net/qq_27825451/article/details/100117715#t0
相关文章:
【机器学习之---数学】马尔科夫链
every blog every motto: You can do more than you think. https://blog.csdn.net/weixin_39190382?typeblog 0. 前言 马尔科夫 1. 概念 1.1 引言 马尔可夫链在许多领域都有应用,包括物理学、生物学、工程学、经济学和计算机科学等。在计算机科学中࿰…...
教程3_图像的轮廓
目录 目标 1. 特征矩 2、轮廓质心 3. 轮廓面积 4. 轮廓周长 5. 轮廓近似 6. 轮廓凸包 7. 边界矩形 7.1.直角矩形 7.2. 旋转矩形 8. 最小闭合圈 9. 拟合一个椭圆 10. 拟合直线 目标 在本文中,我们将学习 - 如何找到轮廓的不同特征,例如面积&…...
【Linux】-Linux下的编辑器Vim的模式命令大全及其自主配置方法
目录 1.简单了解vim 2.vim的模式 2.1命令模式 2.2插入模式 2.3底行模式 3.vim各模式下的命令集 3.1正常(命令模式下) 3.1.1光标定位命令 3.1.2 复制粘贴 3.1.3 删除 3.1.4 撤销 3.1.5大小写转换 3.1.6替换 「R」:替换光标所到之处的字符&…...
基于SpringBoot和Vue的车辆管理系统的设计与实现
今天要和大家聊的是一款基于SpringBoot和Vue的车辆管理系统的设计与实现 !!! 有需要的小伙伴可以通过文章末尾名片咨询我哦!!! 💕💕作者:李同学 💕…...
R折线图(自备)
目录 折线图基础 创建散点和折线图 复杂折现加图例 折线图柱状图 数据处理 进行差异检验 基础绘图折线 基础绘图箱线 进行合并 双轴柱状与折线图 数据 折线图基础 创建散点和折线图 rm(list ls()) opar <-par(no.readonlyTRUE)##自带orange数据集 par(mfrowc…...
web学习笔记(四十五)Node.js
目录 1. Node.js 1.1 什么是Node.js 1.2 为什么要学node.js 1.3 node.js的使用场景 1.4 Node.js 环境的安装 1.5 如何查看自己安装的node.js的版本 1.6 常用终端命令 2. fs 文件系统模块 2.1引入fs核心模块 2.2 读取指定文件的内容 2.3 向文件写入指定内容 2.4 创…...
基于Gabor滤波器的指纹图像识别,Matlab实现
博主简介: 专注、专一于Matlab图像处理学习、交流,matlab图像代码代做/项目合作可以联系(QQ:3249726188) 个人主页:Matlab_ImagePro-CSDN博客 原则:代码均由本人编写完成,非中介,提供…...
55、Qt/事件机制相关学习20240326
一、代码实现设置闹钟,到时间后语音提醒用户。示意图如下: 代码: #include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget), speecher(new QTextToSpeech(t…...
Clip Converter - 视频在线下载方法
Clip Converter - 视频在线下载方法 1. Video URL to Download2. Continue3. StartReferences YT to MP4 & MP3 Converter! https://www.clipconverter.cc/ Clip Converter is a free online media conversion application, which allows you to reocord, convert and do…...
【No.19】蓝桥杯简单数论上|模运算|快速幂|GCD|LCM|刷题统计|RSA解密|核桃的数量(C++)
简单数论 模运算 定义:模运算为 a 除以 m 的余数,记为 a mod m,有 a mod m a % m模运算是大数运算中的常用操作。如果一个数太大,无法直接输出,或者不需要直接输出,可以把它取模后,缩小数值再…...
区块链安全之DDoS防护的重要性及其实施策略
随着区块链技术的不断发展和广泛应用,其安全问题也日益凸显。其中,分布式拒绝服务(DDoS)攻击是对区块链网络稳定性和效率构成潜在威胁的重要因素之一。本文旨在深入探讨区块链为何需要采取DDoS高防措施,并提出相应的防护策略。 一、区块链面…...
使用Spark单机版环境
在Spark单机版环境中,可通过多种方式进行实战操作。首先,可使用特定算法或数学软件计算圆周率π,并通过SparkPi工具验证结果。其次,在交互式Scala版或Python版Spark Shell中,可以进行简单的计算、打印九九表等操作&…...
【分布式】——降级熔断限流
降级&熔断&限流 ⭐⭐⭐⭐⭐⭐ Github主页👉https://github.com/A-BigTree 笔记仓库👉https://github.com/A-BigTree/tree-learning-notes 个人主页👉https://www.abigtree.top ⭐⭐⭐⭐⭐⭐ 如果可以,麻烦各位看官顺手点…...
代码随想录刷题笔记 Day 58 | 判断子序列 No.392 | 不同的子序列 No.115
文章目录 Day 5801. 判断子序列(No. 392)<1> 题目<2> 题解<3> 代码 02. 不同的子序列(No. 115)<1> 题目<2> 题解<3> 代码 Day 58 01. 判断子序列(No. 392) 题目链接…...
【C++11】thread线程库
【C11】thread线程库 目录 【C11】thread线程库thread类的简单介绍函数指针lambda表达式常用在线程中 线程函数参数join与detach利用RAII思想来自动回收线程 原子性操作库(atomic)atomic中的load函数:atomic中对变量进行原子操作的一些函数 CAS(Compare-And-Swap)无…...
【OpenStack】创建系统(VM)实例镜像及实例创建方法
【OpenStack】创建系统(VM)实例镜像及实例创建方法 目录 【OpenStack】创建系统(VM)实例镜像及实例创建方法创建计算镜像加载基本镜像预建镜像手动实例创建cloud-init 搭救使用 `cloud-init` 配置启动实例连接到您的新实例为实例分配 Floating IP创建SSH隧道结论推荐超级课程:…...
灵途科技助力家电智能创新
从智能家电到个护健康,科技无时无刻不在刷新我们对智慧生活的认知,我们也从未像今天这样近距离贴近智慧生活的朴素本质——传感技术。灵途科技专注光电感知技术,持续为智能家电客户提供成熟的全方位感知解决方案。步入发展第八年,…...
Flask python :logging日志功能使用
logging日志的使用 一、了解flask日志1.1、Loggers记录器1.2、Handlers 处理器1.3、Formatters 格式化器 二、使用日志2.1、官网上的一个简单的示例2.2、基本配置2.3、具体使用示例2.4、运行 三、写在最后 一、了解flask日志 日志是一种非常重要的工具,可以帮助开发…...
ethers.js:sign(签名)
Signers 在ethers中Signer是以太坊账户的抽象,可以用来签名消息和交易,如将签名的交易发送到以太坊网络以执行状态更改的操作。 npm install ethers5.4.0// 引入 import { ethers } from ethers签名 this.provider new ethers.providers.Web3Provider(…...
使用npm i进行admin依赖安装的时候出现问题
提示: npm ERR! code CERT_HAS_EXPIRED npm ERR! errno CERT_HAS_EXPIRED npm ERR! request to https://registry.npm.taobao.org/string-width failed, reason: certificate has expired 切换淘宝源到http或者更换其他国内镜像 npm config set registry http:/…...
基于服务器使用 apt 安装、配置 Nginx
🧾 一、查看可安装的 Nginx 版本 首先,你可以运行以下命令查看可用版本: apt-cache madison nginx-core输出示例: nginx-core | 1.18.0-6ubuntu14.6 | http://archive.ubuntu.com/ubuntu focal-updates/main amd64 Packages ng…...
Spring AI与Spring Modulith核心技术解析
Spring AI核心架构解析 Spring AI(https://spring.io/projects/spring-ai)作为Spring生态中的AI集成框架,其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似,但特别为多语…...
鸿蒙DevEco Studio HarmonyOS 5跑酷小游戏实现指南
1. 项目概述 本跑酷小游戏基于鸿蒙HarmonyOS 5开发,使用DevEco Studio作为开发工具,采用Java语言实现,包含角色控制、障碍物生成和分数计算系统。 2. 项目结构 /src/main/java/com/example/runner/├── MainAbilitySlice.java // 主界…...
USB Over IP专用硬件的5个特点
USB over IP技术通过将USB协议数据封装在标准TCP/IP网络数据包中,从根本上改变了USB连接。这允许客户端通过局域网或广域网远程访问和控制物理连接到服务器的USB设备(如专用硬件设备),从而消除了直接物理连接的需要。USB over IP的…...
HDFS分布式存储 zookeeper
hadoop介绍 狭义上hadoop是指apache的一款开源软件 用java语言实现开源框架,允许使用简单的变成模型跨计算机对大型集群进行分布式处理(1.海量的数据存储 2.海量数据的计算)Hadoop核心组件 hdfs(分布式文件存储系统)&a…...
浪潮交换机配置track检测实现高速公路收费网络主备切换NQA
浪潮交换机track配置 项目背景高速网络拓扑网络情况分析通信线路收费网络路由 收费汇聚交换机相应配置收费汇聚track配置 项目背景 在实施省内一条高速公路时遇到的需求,本次涉及的主要是收费汇聚交换机的配置,浪潮网络设备在高速项目很少,通…...
GitFlow 工作模式(详解)
今天再学项目的过程中遇到使用gitflow模式管理代码,因此进行学习并且发布关于gitflow的一些思考 Git与GitFlow模式 我们在写代码的时候通常会进行网上保存,无论是github还是gittee,都是一种基于git去保存代码的形式,这样保存代码…...
Chromium 136 编译指南 Windows篇:depot_tools 配置与源码获取(二)
引言 工欲善其事,必先利其器。在完成了 Visual Studio 2022 和 Windows SDK 的安装后,我们即将接触到 Chromium 开发生态中最核心的工具——depot_tools。这个由 Google 精心打造的工具集,就像是连接开发者与 Chromium 庞大代码库的智能桥梁…...
【LeetCode】算法详解#6 ---除自身以外数组的乘积
1.题目介绍 给定一个整数数组 nums,返回 数组 answer ,其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法,且在 O…...
实战设计模式之模板方法模式
概述 模板方法模式定义了一个操作中的算法骨架,并将某些步骤延迟到子类中实现。模板方法使得子类可以在不改变算法结构的前提下,重新定义算法中的某些步骤。简单来说,就是在一个方法中定义了要执行的步骤顺序或算法框架,但允许子类…...
