AI大语言模型工程师学习路线
文章目录
- 运行LLMS
- LLM APIS
- 开源的大语言模型
- Prompt engineering
- 1. 明确目标
- 2. 理解模型能力
- 3. 使用示例
- 4. 精确和具体的指令
- 5. 考虑上下文
- 6. 避免偏见和不准确的信息
- 7. 测试和迭代
- 8. 使用模板
- 9. 考虑多语言能力
- 10. 注意伦理和合规性
- 结构化输出
- 1. 使用明确的提示(Prompts)
- 2. 采用模板(Templates)
- 3. 利用零样本或少样本学习(Zero-shot or Few-shot Learning)
- 4. 指导性问题(Guided Questions)
- 5. 分步提示(Step-by-step Prompting)
- 6. 使用特定的格式指示词
- 7. 后处理(Post-processing)
- 8. 交互式提示(Interactive Prompting)
- 9. 训练定制化模型(Training Customized Models)
- 10. 反馈循环(Feedback Loops)
- 构建向量存储
- 摄取文档
- 1. 文档准备
- 2. 元数据提取
- 3. 文本清洗和标准化
- 4. 文档解析
- 5. 数据存储
- 6. 与模型集成
- 7. 安全性和隐私
- 8. 可扩展性
- 9. 监控和维护
- 10. 用户界面
- 分割文档
- 1. 按长度分割
- 2. 按内容结构分割
- 3. 按主题分割
- 4. 按功能分割
- 5. 保留上下文信息
- 6. 考虑分割的一致性
- 7. 使用自动化工具
- 8. 后处理和验证
- 9. 考虑性能和资源
- 10. 用户交互
- 嵌入模型
- 1. 词嵌入(Word Embeddings)
- 2. 句子和段落嵌入(Sentence and Paragraph Embeddings)
- 3. 嵌入在推荐系统中的应用
- 4. 嵌入在处理长文本中的应用
- 5. 嵌入模型的评估
- 6. 嵌入模型的生成和存储
- 向量数据库
- 1. 文本嵌入(Text Embeddings)
- 2. 向量数据库的作用
- 3. 结合使用LLM和向量数据库
- 4. 应用场景
- 5. 推荐的向量数据库
- 6. 存储和查询流程
- 检索增强生成(Retrieval Augmented Generation)
- Orchestrators
- Retrievers
- Memory
- Evaluation
- 高级RAG
- 查询构建
- 代理和工具
- 后处理
- 推理优化
- Flash Attention
- Key-value cache
- 推测性解码
- LLMs安全
- 部署LLMS
- 本地部署
- 演示部署
- 服务器部署
- 边缘部署
运行LLMS
LLM APIS
由于硬件要求高,运行大型语言模型(LLMs)可能会很困难。根据您的用例,您可能只想通过API(如GPT-4)使用模型,或者在本地运行它。
OpenAI的ChatGPT API - 提供基于GPT-3模型的文本生成和对话能力。
Bard API - 可能是指由Google开发的一个LLM API,用于生成文本和对话。
GooseAI - 搜索结果中没有提供详细信息,但GooseAI可能是一个提供自然语言处理服务的API。
Cohere API - 提供文本生成、摘要、翻译等功能。
Gorilla - 一个开源的、最先进的LLM,能够从自然语言提示生成准确可靠的API调用。
RestGPT - 一个将大型语言模型与现实世界中的RESTful APIs连接起来的框架。
国内的模型:
百度的文心一言API - 具备跨模态、跨语言的深度语义理解与生成能力。
阿里云的通义千问API - 能够在用户自然语言输入的基础上,提供服务和帮助。
腾讯的混元大模型API - 在自然语言处理、文本生成、机器翻译等领域具有广泛的应用。
科大讯飞的星火认知大模型API - 在多个方面如文本生成、语言理解等提升了性能。
字节跳动的云雀大模型API - 具备多种功能和应用场景,通过自然语言交互,能够高效地完成互动对话、信息获取等任务。
智谱华章的智普清言API - 具有强大的自然语言处理和多模态理解能力。
中科院的紫东太初API - 在自然语言处理、文本生成、机器翻译等领域具有广泛的应用
开源的大语言模型
Grok-1:由马斯克旗下的人工智能初创公司xAI训练,参数量高达3140亿,是迄今为止参数量最大的开源大模型。
Llama:由Meta公司发布,参数量为700亿。
LLaMA 2 - 由Meta AI(原Facebook AI)发布的开源大型语言模型,具有不同规模的版本,从7亿到700亿参数。
BLOOM - 由BigScience和Hugging Face合作开发的自回归LLM,拥有176亿参数,支持多种语言。
BERT - 由Google开发的开源双向编码器表示模型,是Transformer架构的早期实现之一,广泛应用于各种NLP任务。
Falcon 180B - 由阿拉伯技术创新研究所发布的模型,具有1800亿参数,旨在缩小专有和开源LLM之间的性能差距。
OPT-175B - Meta AI发布的一系列预训练Transformer模型,参数范围从125M到175B,其中175B版本性能与GPT-3相似。
XGen-7B - Salesforce推出的模型,专注于支持更长上下文窗口的工具,具有7亿参数。
GPT-NeoX 和 GPT-J - 由EleutherAI开发的开源替代品,参数量分别为20亿和6亿,训练自22个高质量数据集。
Vicuna 13-B - 一个开源对话模型,通过使用从ShareGPT收集的用户共享对话对LLaMa 13B模型进行微调而训练而来。
此外,还有一些针对特定语言或领域的开源LLM,例如:
ChatGLM-6B - 支持中英双语的对话语言模型,针对中文进行了优化。
MOSS - 支持中英双语的对话大语言模型,具有160亿参数。
CPM-Bee - 完全开源、允许商用的百亿参数中英文基座模型。
LaWGPT - 基于中文法律知识的大语言模型。
本草 (BenTsao) - 基于中文医学知识的LLaMA微调模型。
这些开源LLM为研究人员和开发者提供了丰富的资源,可以用于各种自然语言处理任务,如文本生成、问答系统、机器翻译等。开源LLM的可用性和灵活性促进了NLP领域的创新和发展
Prompt engineering
Prompt engineering 是指设计和优化输入文本(称为prompt)以引导大型语言模型(LLM)生成特定输出的过程。在自然语言处理(NLP)中,特别是在使用基于Transformer的模型(如GPT-3、BERT等)时,prompt engineering 是一个关键的技能,因为它可以显著影响模型的输出质量和相关性。
以下是一些prompt engineering的关键方面和技巧:
1. 明确目标
在设计prompt之前,你需要明确你希望模型执行的任务。是生成文本、回答问题、翻译语言、还是其他任务?明确的目标将帮助你构建更有效的prompt。
2. 理解模型能力
不同的模型可能在不同的任务上表现更好。了解你的模型擅长什么,以及它的训练数据包含哪些内容,可以帮助你设计更合适的prompt。
3. 使用示例
提供一个或多个相关示例可以指导模型理解你期望的输出格式。这种方法被称为“零样本”或“少样本”学习。
4. 精确和具体的指令
尽量使prompt精确和具体,避免模糊不清的语言。这有助于模型生成更准确和相关的输出。
相关文章:
AI大语言模型工程师学习路线
文章目录 运行LLMSLLM APIS开源的大语言模型Prompt engineering1. 明确目标2. 理解模型能力3. 使用示例4. 精确和具体的指令5. 考虑上下文6. 避免偏见和不准确的信息7. 测试和迭代8. 使用模板9. 考虑多语言能力10. 注意伦理和合规性结构化输出1. 使用明确的提示(Prompts)2. 采…...
基于树莓派实现 --- 智能家居
最效果展示 演示视频链接:基于树莓派实现的智能家居_哔哩哔哩_bilibilihttps://www.bilibili.com/video/BV1Tr421n7BM/?spm_id_from333.999.0.0 (PS:房屋模型的搭建是靠纸板箱和淘宝买的家居模型,户型参考了留学时短租的公寓~&a…...
基于Arduino IDE 野火ESP8266模块 一键配网 的开发
一、配网介绍 ESP8266 一键配网(也称为 SmartConfig 或 FastConfig)是一种允许用户通过智能手机上的应用程序快速配置 ESP8266 Wi-Fi 模块的方法,而无需手动输入 SSID 和密码。为了实现这一功能,则需要一个支持 SmartConfig 的智能…...
左手医生:医疗 AI 企业的云原生提效降本之路
相信这样的经历对很多人来说并不陌生:为了能到更好的医院治病,不惜路途遥远奔波到大城市;或者只是看个小病,也得排上半天长队。这些由于医疗资源分配不均导致的就医问题已是老生长谈。 云计算、人工智能、大数据等技术的发展和融…...
ceph集群部署
1. 每台服务器各增加2块硬盘(类型最好是相同的) 2. 将三台主机名设为node1.openlab.edu、node2.openlab.edu、node3.openlab.edu 3. 登录所有主机,配置 /etc/hosts 文件 192.168.136.55 ceph1.openlab.edu ceph1 192.168.136.56 ceph2.openlab.edu ceph2 192.168…...
C#WPF控件Label宽度绑定到父控件的宽度
如何将Label的宽度绑定到它所在Grid的宽度。跟随父控件的宽度的改变而改变。 <Window x:Class="WpfApp.MainWindow"xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml&q…...
HMI的学习
什么是HMI?了解HMI或人机界面的一些基础知识_哔哩哔哩_bilibili Human Machine Interface 人机界面 在工业中使用HMI来控制和监视设备 常见的HMI是ATM机 通过屏幕和按钮来完成取款或存款 工业中,操作员或维护人员可以从HMI操作和监视设备。 它们可能…...
工业无线网关在汽车制造企业的应用效果和价值-天拓四方
随着智能制造的快速发展,工业无线网关作为关键通信设备,在提升生产效率、优化生产流程、实现设备间的互联互通等方面发挥着越来越重要的作用。以下是一个关于工业无线网关在智能制造行业应用的具体案例,展示了其在实际生产中的应用效果和价值…...
校园app开发流程-uniapp开发-支持APP小程序H5-源码交付-跑腿-二手市场-交友论坛等功能,学校自由选择!
随着科技的不断发展,智慧校园系统和跑腿外卖小程序已经成为当今社会的热门话题。作为未来的重要趋势之一,科技在教育领域中的应用越来越广泛。本文将探讨智慧校园系统和跑腿外卖小程序的开发过程,并阐述如何利用科技“育”见未来 一、智慧校…...
Machine Learning机器学习之K近邻算法(K-Nearest Neighbors,KNN)
目录 前言 背景介绍: 思想: 原理: KNN算法关键问题 一、构建KNN算法 总结: 博主介绍:✌专注于前后端、机器学习、人工智能应用领域开发的优质创作者、秉着互联网精神开源贡献精神,答疑解惑、坚持优质作品共…...
四、在数据库里建库
一、查库 ##1)库:一个库就是一个excell文档,库里含有表,一个表就是一个excell的sheet. ##2)查看数据库实例中有哪些库 MariaDB [(none)]> show databases; -------------------- | Database | -------------------- | informat…...
蓝桥杯-网络安全比赛(2)基础学习-正则表达式匹配电话号码、HTTP网址、IP地址、密码校验
正则表达式(Regular Expression):定义:一种强大的文本处理工具,用于描述、匹配和查找字符串中的特定模式。应用:密码验证、文本搜索和替换、数据清洗等。特点:通过特定的元字符和规则来构建复杂…...
如何创建azure pipeline
Azure Pipelines是一种持续集成和持续交付(CI/CD)工具,可以帮助开发团队自动化构建、测试和部署应用程序。以下是创建Azure Pipeline的步骤: 登录到Azure DevOps(https://dev.azure.com/)。在Azure DevOps…...
缓存菜品、套餐、购物车相关功能
一、缓存菜品 通过缓存的方式提高查询性能 1.1问题说明 大量的用户访问导致数据库访问压力增大,造成系统响应慢,用户体验差 1.2 实现思路 优先查询缓存,如果缓存没有再去查询数据库,然后载入缓存 将菜品集合序列化后缓存入red…...
微信小程序的页面交互1
一、page()函数 每个页面的s代码全部写入对应的js文件的page()函数里面。点击编译,就可以显示js代码的运行效果。注意,每个页面的page()函数是唯一的。 page(ÿ…...
win10 docker zookeeper和kafka搭建
好久没用参与大数据之类的开发了,近日接触到一个项目中使用到kafka,因此要在本地搭建一个简易的kafka服务。时间比较紧急,之前有使用docker的经验,因此本次就使用docker来完成搭建。在搭建过程中出现的一些问题,及时记…...
【Redis】快速入门 数据类型 常用指令 在Java中操作Redis
文章目录 一、简介二、特点三、下载与安装四、使用4.1 服务器启动4.2 客户端连接命令4.3 修改Redis配置文件4.4 客户端图形化界面 五、数据类型5.1 五种常用数据类型介绍5.2 各种数据类型特点 六、常用命令6.1 字符串操作命令6.2 哈希操作命令6.3 列表操作命令6.4 集合操作命令…...
【tingsboard开源平台】下载数据库,IDEA编译,项目登录
一, PostgreSQL 下载 需要看官网的:点此下载直达地址:点此进行相关学习:PostgreSQL 菜鸟教程 二,PostgreSQL 安装 点击安装包进行安装 出现乱码错误: There has been an error. Error running C:\Wind…...
Web3:探索区块链与物联网的融合
引言 随着科技的不断发展,区块链技术和物联网技术都成为了近年来备受瞩目的前沿技术。而当这两者结合在一起,将产生怎样的化学反应呢?本文将深入探讨Web3时代中区块链与物联网的融合,探索其意义、应用场景以及未来发展趋势。 1. …...
[BT]BUUCTF刷题第9天(3.27)
第9天(共2题) [护网杯 2018]easy_tornado 打开网站就是三个txt文件 /flag.txt flag in /fllllllllllllag/welcome.txt render/hints.txt md5(cookie_secretmd5(filename))当点进flag.txt时,url变为 http://b9e52e06-e591-46ad-953e-7e8c5f…...
(十)学生端搭建
本次旨在将之前的已完成的部分功能进行拼装到学生端,同时完善学生端的构建。本次工作主要包括: 1.学生端整体界面布局 2.模拟考场与部分个人画像流程的串联 3.整体学生端逻辑 一、学生端 在主界面可以选择自己的用户角色 选择学生则进入学生登录界面…...
PHP和Node.js哪个更爽?
先说结论,rust完胜。 php:laravel,swoole,webman,最开始在苏宁的时候写了几年php,当时觉得php真的是世界上最好的语言,因为当初活在舒适圈里,不愿意跳出来,就好比当初活在…...
Rust 异步编程
Rust 异步编程 引言 Rust 是一种系统编程语言,以其高性能、安全性以及零成本抽象而著称。在多核处理器成为主流的今天,异步编程成为了一种提高应用性能、优化资源利用的有效手段。本文将深入探讨 Rust 异步编程的核心概念、常用库以及最佳实践。 异步编程基础 什么是异步…...
前端开发面试题总结-JavaScript篇(一)
文章目录 JavaScript高频问答一、作用域与闭包1.什么是闭包(Closure)?闭包有什么应用场景和潜在问题?2.解释 JavaScript 的作用域链(Scope Chain) 二、原型与继承3.原型链是什么?如何实现继承&a…...
【HarmonyOS 5 开发速记】如何获取用户信息(头像/昵称/手机号)
1.获取 authorizationCode: 2.利用 authorizationCode 获取 accessToken:文档中心 3.获取手机:文档中心 4.获取昵称头像:文档中心 首先创建 request 若要获取手机号,scope必填 phone,permissions 必填 …...
Python Einops库:深度学习中的张量操作革命
Einops(爱因斯坦操作库)就像给张量操作戴上了一副"语义眼镜"——让你用人类能理解的方式告诉计算机如何操作多维数组。这个基于爱因斯坦求和约定的库,用类似自然语言的表达式替代了晦涩的API调用,彻底改变了深度学习工程…...
LCTF液晶可调谐滤波器在多光谱相机捕捉无人机目标检测中的作用
中达瑞和自2005年成立以来,一直在光谱成像领域深度钻研和发展,始终致力于研发高性能、高可靠性的光谱成像相机,为科研院校提供更优的产品和服务。在《低空背景下无人机目标的光谱特征研究及目标检测应用》这篇论文中提到中达瑞和 LCTF 作为多…...
算法打卡第18天
从中序与后序遍历序列构造二叉树 (力扣106题) 给定两个整数数组 inorder 和 postorder ,其中 inorder 是二叉树的中序遍历, postorder 是同一棵树的后序遍历,请你构造并返回这颗 二叉树 。 示例 1: 输入:inorder [9,3,15,20,7…...
拟合问题处理
在机器学习中,核心任务通常围绕模型训练和性能提升展开,但你提到的 “优化训练数据解决过拟合” 和 “提升泛化性能解决欠拟合” 需要结合更准确的概念进行梳理。以下是对机器学习核心任务的系统复习和修正: 一、机器学习的核心任务框架 机…...
表单设计器拖拽对象时添加属性
背景:因为项目需要。自写设计器。遇到的坑在此记录 使用的拖拽组件时vuedraggable。下面放上局部示例截图。 坑1。draggable标签在拖拽时可以获取到被拖拽的对象属性定义 要使用 :clone, 而不是clone。我想应该是因为draggable标签比较特。另外在使用**:clone时要将…...
