python知识点总结(十)
python知识点总结十
- 1、装饰器的理解、并实现一个计时器记录执行性能,并且将执行结果写入日志文件中
- 2、队列和栈的区别,并且用python实现
- 3、设计实现遍历目录与子目录
- 4、CPU处理进程最慢的情况通常发生在以下几种情况下:
- 5、CPU处理线程最慢的情况通常发生在以下几种情况下:
- 6、如何做到线程同步?
- 7、手写代码:对于字符串bdackmkdbb,输出第二个只出现一次的字符, 输出c
- 8、按按照题目要求写出对应的装饰器。
1、装饰器的理解、并实现一个计时器记录执行性能,并且将执行结果写入日志文件中
函数装饰器
def decator(file):def outer(func):def inner(*args, **kwargs):start = time.time()time.sleep(3)res = func(*args, **kwargs)with open(file,encoding='utf-8',mode='w') as f:f.write(str(res))end = time.time()print('执行时间:', end - start)return resreturn innerreturn outer@decator(file='1.txt')
def func(a, b):return a + ba = 2
b = 3
print(func(a, b))
类装饰器
class A:def __init__(self,file):self.file=filedef __call__(self, func, *args, **kwargs):def wrapper(*args,**kwargs):start = time.time()time.sleep(3)res = func(*args, **kwargs)with open(self.file, encoding='utf-8', mode='w') as f:f.write(str(res))end = time.time()print('执行时间:', end - start)return resreturn wrapper@A(file='a.txt')
def f(a,b):return a+ba=3
b=6
print(f(a, b))
2、队列和栈的区别,并且用python实现
队列(Queue)和栈(Stack)是两种常见的数据结构,它们之间的主要区别在于数据的存取方式:
队列(Queue):
先进先出(FIFO):队列是按照先进先出的原则存取数据的,即先进入队列的数据会先被取出。
操作:在队列中,数据的插入是在队尾进行(enqueue),数据的删除是在队头进行(dequeue)。
应用:队列常用于实现广度优先搜索(BFS)等算法,如消息队列、任务调度等。
栈(Stack):
后进先出(LIFO):栈是按照后进先出的原则存取数据的,即最后压入栈的数据会最先被弹出。
操作:在栈中,数据的插入和删除都是在栈顶进行,压入数据称为入栈(push),弹出数据称为出栈(pop)。
应用:栈常用于实现递归函数、表达式求值、回溯算法等。
队列的实现:
from collections import deque# 创建一个空队列
queue = deque()# 入队
queue.append(1)
queue.append(2)
queue.append(3)# 出队
while queue:front = queue.popleft()print("出队:", front)
栈的实现:
# 创建一个空栈
stack = []# 入栈
stack.append(1)
stack.append(2)
stack.append(3)# 出栈
while stack:top = stack.pop()print("出栈:", top)
3、设计实现遍历目录与子目录
import os
def get_files(dir,suffix): res = [] for root,dirs,files in os.walk(dir): for filename in files: name,suf = os.path.splitext(filename) if suf == suffix: res.append(os.path.join(root,filename)) print(res) get_files("./",'.pyc')
4、CPU处理进程最慢的情况通常发生在以下几种情况下:
1、cpu负载过高:
当系统中的CPU负载达到极限或者过载时,CPU处理进程的速度就会变慢。这是因为系统资源不足,导致CPU长时间无法及时处理进程造成的。
2、竞争资源:
当多个进程竞争同一资源,如内存、硬盘或者网络宽带等,会导致CPU处理进程变慢。因为CPU需要需要等待资源的释放。
3、I/O操作:
当进程需要进行大量的输入输出操作时,CPU处理进程的速度会变慢,这是因为I/O操作相比于CPU处理速度较慢。
5、系统调度:系统调度算法不当或者优先级设置不合理可能会导致 CPU 处理进程的速度变慢,造成进程长时间等待。
5、CPU处理线程最慢的情况通常发生在以下几种情况下:
-
CPU密集型任务:当系统中存在大量的 CPU 密集型任务,会导致 CPU 处理线程变慢。因为 CPU 需要不断执行这些耗时的任务,占用大量计算资源。
-
资源竞争:当多个线程竞争同一资源,如共享内存、文件、数据库连接等,会导致 CPU 处理线程变慢。因为线程需要等待资源的释放或者合适时机才能继续执行。
-
I/O操作:和处理进程类似,线程进行大量的 I/O 操作也会导致 CPU 处理线程变慢,因为线程需要等待 I/O 操作完成才能继续执行。
-
死锁:当线程之间出现死锁情况时,CPU 处理线程会陷入等待状态,无法继续执行。这也会导致 CPU 处理线程变慢,直到死锁解除。
-
线程调度:系统调度算法或线程优先级设置不当可能会导致 CPU 处理线程变慢,造成线程长时间等待。
-
线程处于阻塞状态。
6、如何做到线程同步?
-
互斥锁(Mutex):互斥锁是一种最基本的线程同步机制,用于保护共享资源不被多个线程同时访问。在访问共享资源之前,线程需要先锁定互斥锁,访问完成后再释放锁。这样可以确保在同一时刻只有一个线程可以访问共享资源。
-
信号量(Semaphores):信号量是一种用于线程同步的计数器,可以阻塞或唤醒线程。通过信号量实现同步操作,控制多个线程对共享资源的访问。可以实现信号量来控制资源的访问数量,从而保证线程同步。
-
读写锁(Read-Write Locks):读写锁允许多个线程同时读取共享资源,但只允许一个线程写入共享资源。通过读写锁,可以提高共享资源的并发访问性能。
-
屏障(Barriers):屏障用于多个线程需要在某个点同步,等待所有线程都到达后才能继续执行。屏障可以保证多个线程在执行过程中按一定顺序同步,实现前后依赖关系。
-
原子操作(Atomic Operations):原子操作是一种不可分割的操作,可以保证操作的完整性和线程安全性。在需要对共享资源进行简单操作时,可以使用原子操作来保证线程同步。
7、手写代码:对于字符串bdackmkdbb,输出第二个只出现一次的字符, 输出c
def test(s):dic={}res=[]for i in s:if i not in dic:dic[i]=1else:dic[i]+=1for key,value in dic.items():if value==1:res.append(key)return res[1]s="bdackmkdbb"
res=test(s)
print(res)
8、按按照题目要求写出对应的装饰器。
要求:有一个通过网络获取数据的函数(可能会因为网络原因出现异常),写一个装饰器让这个函数在出现指定异常时可以重试指定的次数,并在每次重试之前随机延迟一段时间,最长延迟时间可以通过参数进行控制。
点评:LeetCode上的企业面试题目,我们不止一次强调过,装饰器几乎是Python面试必问内
容,这个题目比之前的题目稍微复杂一些,它需要的是一个参数化的装饰器。
from functools import wraps
from random import randomdef retry(retry_time=3, max_wait_sec=5, error=(Exception,)):def decorate(fn):@wraps(fn)def wrapper(*args, **kwargs):for _ in range(retry_time):try:return fn(*args, **kwargs)except error:time.sleep(random() * max_wait_sec)return Nonereturn wrapperreturn decorate@retry(retry_time=4, max_wait_sec=4)
def request_():return '6666'print(request_())
相关文章:

python知识点总结(十)
python知识点总结十 1、装饰器的理解、并实现一个计时器记录执行性能,并且将执行结果写入日志文件中2、队列和栈的区别,并且用python实现3、设计实现遍历目录与子目录4、CPU处理进程最慢的情况通常发生在以下几种情况下:5、CPU处理线程最慢的…...

【Python】探索 Python 编程世界:常量、变量及数据类型解析
欢迎来CILMY23的博客 本篇主题为 探索 Python 编程世界:常量、变量及数据类型解析 个人主页:CILMY23-CSDN博客 Python系列专栏:http://t.csdnimg.cn/HqYo8 上一篇博客: http://t.csdnimg.cn/SEdbp C语言专栏: htt…...
vue页面实现左右div宽度,上下div高度分割线手动拖动高度或者宽度自动变化,两个div宽度或者高度拉伸调节,实现左右可拖动改变宽度的div内容显示区
实现左右或者上下div两部分拖动,宽度或者高度自动变化,实现流畅平滑的变化,还可以是实现拖动到一定宽度就不让拖动了,如果你不需要最小宽度,就直接去掉样式就行 这是页面。分左中右三部分,中间我是用来作为拖动的按钮…...

知攻善防应急靶场-Linux(1)
前言: 堕落了三个月,现在因为被找实习而困扰,着实自己能力不足,从今天开始 每天沉淀一点点 ,准备秋招 加油 注意: 本文章参考qax的网络安全应急响应和知攻善防实验室靶场,记录自己的学习过程&am…...
ffmpeg命令行
ffmpeg 如果要在linux gdb 调试,需要在configure 时候不优化 开启调试 ./configure --enable-debug --disable-optimizations make如何开启gdb 调试 gdb ffmpeg_gset args -i test.hevc -c:v copy -c:a copy output_265.mp4rh264 的流生成mp4 文件,不转…...

VMware虚拟机更换引导顺序
前言 我用wmware装了黑群晖测试,将img转成vmdisk的格式之后发现系统引导盘之后1G,有点太小了 我准备把wmware的黑群晖系统迁移到新添加的虚拟磁盘里 1.登录黑群晖的SSH 请先在黑群晖的控制面板中的终端机和SNMP里面启用SSH功能,才能使用ss…...

RAFT:让大型语言模型更擅长特定领域的 RAG 任务
RAFT(检索增强的微调)代表了一种全新的训练大语言模型(LLMs)以提升其在检索增强生成(RAG)任务上表现的方法。“检索增强的微调”技术融合了检索增强生成和微调的优点,目标是更好地适应各个特定领…...

Stable Diffusion 本地训练端口与云端训练端口冲突解决办法
方法之一,修改本地训练所用的端口 1 首先,进入脚本训练器的根目录 例如:C:\MarkDeng\lora-scripts-v1.7.3 找到gui.py 2 修改端口号 因为云端训练器也是占用28000和6006端口 那么本地改成27999和6007也是可以的 保存退出,运行启动…...

C++学习day1
思维导图 定义自己的命名空间,其中有string类型的变量,再定义两个函数,一个函数完成字符串的输入,一个函数完成求字符串长度,再定义一个全局函数完成对该字符串的反转 #include <iostream> using namespace std;…...
openGauss CM
CM 可获得性 本特性自openGauss 3.0.0版本开始引入。 特性简介 CM(Cluster Manager)是一款数据库管理软件,由cm_server和cm_agent组成。 cm_agent是部署在数据库每个主机上,用来启停和监控各个数据库实例进程的数据库管理组件…...

北斗短报文+4G应急广播系统:实时监控 自动预警 保护校园安全的新力量
安全无小事,生命重如山。学生是祖国的未来,校园安全是全社会安全工作的一个重要的组成部分。它直接关系到青少年学生能否安健康地成长,关系到千千万万个家庭的幸福安宁和社会稳定。 灾害事故和突发事件频频发生,给学生、教职员工…...

2024河北石家庄矿业矿山展览会|河北智慧矿山展会|河北矿博会
2024中国(石家庄)国际矿业博览会 时间:2024年7月4-6日 地点:石家庄国际会展中心.正定 随着全球经济的持续增长和矿产资源需求的不断攀升,矿业行业正迎来前所未有的发展机遇。作为矿业领域的盛会&…...
ruoyi使用笔记
1.限流处理 RateLimiter PostMapping("/createOrder") ApiOperation("创建充值订单") RateLimiter(key CacheConstants.REPEAT_SUBMIT_KEY,time 10,count 1,limitType LimitType.IP) public R createOrder(RequestBody Form form) {//业务处理return …...

论文《Exploring to Prompt for Vision-Language Models》阅读
论文《Exploring to Prompt for Vision-Language Models》阅读 论文概况论文动机(Intro)MethodologyPreliminaryCoOp[CLASS]位置Context 是否跨 class 共享表示和训练 ExperimentsOverall ComparisonDomain GeneralizationContext Length (M) 和 backbon…...

科普 | Runes 预挖矿概念
作者:Jacky X/推:zxl2102492 关于 Runes 协议的前世今生,可以点击阅读这篇文章 👇 《简述 Runes 协议、发展历程及最新的「公开铭刻」发行机制的拓展讨论》 什么是传统预挖矿概念 这轮比特币生态爆发之前,预挖矿&…...

蓝桥杯真题Day40 倒计时19天 纯练题!
蓝桥杯第十三届省赛真题-统计子矩阵 题目描述 给定一个 N M 的矩阵 A,请你统计有多少个子矩阵 (最小 1 1,最大 N M) 满足子矩阵中所有数的和不超过给定的整数 K? 输入格式 第一行包含三个整数 N, M 和 K. 之后 N 行每行包含 M 个整数…...
Android 14.0 SystemUI下拉状态栏增加响铃功能
1.概述 在14.0的系统产品rom定制化开发中,在对systemui的状态栏开发中,对SystemUI下拉状态栏的QuickQSPanel区域有快捷功能键开关,对于增加各种响铃快捷也是常用功能, 有需要增加响铃功能开关功能,接下来就来分析SystemUI下拉状态栏QuickQSPanel快捷功能键开关的相关源码…...
docker学习笔记 二-----docker介绍
老套路哈,第一章先科普一下三种常见的云服务类型,第二和第三章节写docker学习笔记。 一 、IAAS、PAAS、SAAS IAAS (Infrastructure as a Service):基础即服务,供应商仅提供给用户最基础设施的服务资源,也就是服务器资…...

螺旋矩阵的算法刷题
螺旋矩阵的算法刷题 本文主要涉及螺旋矩阵的算法 包括三个题目分别是 59. 螺旋矩阵 II54. 螺旋矩阵 中等LCR 146. 螺旋遍历二维数组 文章目录 螺旋矩阵的算法刷题一 、螺旋矩阵简单1.1 实现一(我认为这个方法更巧妙!!)1.2 实现二&…...

蓝桥杯算法赛(二进制王国)
问题描述 二进制王国是一个非常特殊的国家,因为该国家的居民仅由 0 和 1 组成。 在这个国家中,每个家庭都可以用一个由 0 和 1 组成的字符串 S 来表示,例如 101、 000、 111 等。 现在,国王选了出 N 户家庭参加邻国的庆典…...

使用docker在3台服务器上搭建基于redis 6.x的一主两从三台均是哨兵模式
一、环境及版本说明 如果服务器已经安装了docker,则忽略此步骤,如果没有安装,则可以按照一下方式安装: 1. 在线安装(有互联网环境): 请看我这篇文章 传送阵>> 点我查看 2. 离线安装(内网环境):请看我这篇文章 传送阵>> 点我查看 说明:假设每台服务器已…...
OpenLayers 可视化之热力图
注:当前使用的是 ol 5.3.0 版本,天地图使用的key请到天地图官网申请,并替换为自己的key 热力图(Heatmap)又叫热点图,是一种通过特殊高亮显示事物密度分布、变化趋势的数据可视化技术。采用颜色的深浅来显示…...
反向工程与模型迁移:打造未来商品详情API的可持续创新体系
在电商行业蓬勃发展的当下,商品详情API作为连接电商平台与开发者、商家及用户的关键纽带,其重要性日益凸显。传统商品详情API主要聚焦于商品基本信息(如名称、价格、库存等)的获取与展示,已难以满足市场对个性化、智能…...

【Oracle APEX开发小技巧12】
有如下需求: 有一个问题反馈页面,要实现在apex页面展示能直观看到反馈时间超过7天未处理的数据,方便管理员及时处理反馈。 我的方法:直接将逻辑写在SQL中,这样可以直接在页面展示 完整代码: SELECTSF.FE…...
Oracle查询表空间大小
1 查询数据库中所有的表空间以及表空间所占空间的大小 SELECTtablespace_name,sum( bytes ) / 1024 / 1024 FROMdba_data_files GROUP BYtablespace_name; 2 Oracle查询表空间大小及每个表所占空间的大小 SELECTtablespace_name,file_id,file_name,round( bytes / ( 1024 …...

8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂
蛋白质结合剂(如抗体、抑制肽)在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上,高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术,但这类方法普遍面临资源消耗巨大、研发周期冗长…...
基于数字孪生的水厂可视化平台建设:架构与实践
分享大纲: 1、数字孪生水厂可视化平台建设背景 2、数字孪生水厂可视化平台建设架构 3、数字孪生水厂可视化平台建设成效 近几年,数字孪生水厂的建设开展的如火如荼。作为提升水厂管理效率、优化资源的调度手段,基于数字孪生的水厂可视化平台的…...

微信小程序云开发平台MySQL的连接方式
注:微信小程序云开发平台指的是腾讯云开发 先给结论:微信小程序云开发平台的MySQL,无法通过获取数据库连接信息的方式进行连接,连接只能通过云开发的SDK连接,具体要参考官方文档: 为什么? 因为…...

Map相关知识
数据结构 二叉树 二叉树,顾名思义,每个节点最多有两个“叉”,也就是两个子节点,分别是左子 节点和右子节点。不过,二叉树并不要求每个节点都有两个子节点,有的节点只 有左子节点,有的节点只有…...
Xen Server服务器释放磁盘空间
disk.sh #!/bin/bashcd /run/sr-mount/e54f0646-ae11-0457-b64f-eba4673b824c # 全部虚拟机物理磁盘文件存储 a$(ls -l | awk {print $NF} | cut -d. -f1) # 使用中的虚拟机物理磁盘文件 b$(xe vm-disk-list --multiple | grep uuid | awk {print $NF})printf "%s\n"…...