当前位置: 首页 > news >正文

pytorch笔记篇:pandas之数据预处理(更新中)

pytorch笔记篇:pandas之数据预处理

  • pytorch笔记篇:pandas之数据预处理(更新中)
    • 测试例代码
    • 相关的算子

pytorch笔记篇:pandas之数据预处理(更新中)

测试例代码

print(train_data.iloc[0:4, [0, 1, 2, 3, -3, -2, -1]])
# (1) 为什么test_data的列最后不是-1,是因为test_data没有价格这个列项
all_features = pd.concat((train_data.iloc[:, 1:-1], test_data.iloc[:, 1:]))
print('-----------------------------------------------')
print(all_features.iloc[0:4, [0, 1, 2, 3, -3, -2, -1]])# (2) 获取到不是数值的列index]
numeric_features = all_features.dtypes[all_features.dtypes != 'object'].index# print('++++++++++++++++++++++++')
# (3) print(all_features[numeric_features].iloc[0:3, [0,1,2,3,-3,-2,-1]])
# print('----------------------')
all_features[numeric_features] = all_features[numeric_features].apply(lambda x: (x - x.mean()) / (x.std()))
# print(all_features[numeric_features].iloc[0:3, [0,1,2,3,-3,-2,-1]])
# input()# (4) 在标准化数据之后,所有均值消失,因此我们可以将缺失值设置为0
all_features[numeric_features] = all_features[numeric_features].fillna(0)# (5) dummies & pd to tensor
print('++++++++++  demo test dummies  +++++++++++')
test = pd.DataFrame({'“x”':[1,2,3,4,5, 6], "seasion":['here', 'over', '', 'next', '', 'here']})
print(test)
print('-------------------------------')
test = pd.get_dummies(test, dummy_na=True)
print(test)
test = test*1
print(test)
print('++++++++++  test trans to tensor  +++++++++++')
# test1 = torch.tensor(test)
# 全部转化
test1 = torch.tensor(test.values, dtype=torch.float32)
print(test1.shape)
print(test1)
print('-------------------------------')
# 不用iloc的话就是光是行处理
test2 = torch.tensor(test[:3].values, dtype=torch.float32)
print(test2.shape)
print(test2)
print('-------------------------------')
# 特定行列转化需要熟练运动iloc
test3 = torch.tensor(test.iloc[:2, :-1].values, dtype=torch.float32)
print(test3.shape)
print(test3)
input()output-begin:
(1460, 81)
(1459, 80)Id  MSSubClass MSZoning  LotFrontage SaleType SaleCondition  SalePrice
0   1          60       RL         65.0       WD        Normal     208500
1   2          20       RL         80.0       WD        Normal     181500
2   3          60       RL         68.0       WD        Normal     223500
3   4          70       RL         60.0       WD       Abnorml     140000
-----------------------------------------------MSSubClass MSZoning  LotFrontage  LotArea  YrSold SaleType SaleCondition
0          60       RL         65.0     8450    2008       WD        Normal
1          20       RL         80.0     9600    2007       WD        Normal
2          60       RL         68.0    11250    2008       WD        Normal
3          70       RL         60.0     9550    2006       WD       Abnorml
++++++++++  demo test dummies  +++++++++++“x” seasion
0    1    here
1    2    over
2    3        
3    4    next
4    5        
5    6    here
-------------------------------“x”  seasion_  seasion_here  seasion_next  seasion_over  seasion_nan
0    1     False          True         False         False        False
1    2     False         False         False          True        False
2    3      True         False         False         False        False
3    4     False         False          True         False        False
4    5      True         False         False         False        False
5    6     False          True         False         False        False“x”  seasion_  seasion_here  seasion_next  seasion_over  seasion_nan
0    1         0             1             0             0            0
1    2         0             0             0             1            0
2    3         1             0             0             0            0
3    4         0             0             1             0            0
4    5         1             0             0             0            0
5    6         0             1             0             0            0
++++++++++  test trans to tensor  +++++++++++
torch.Size([6, 6])
tensor([[1., 0., 1., 0., 0., 0.],[2., 0., 0., 0., 1., 0.],[3., 1., 0., 0., 0., 0.],[4., 0., 0., 1., 0., 0.],[5., 1., 0., 0., 0., 0.],[6., 0., 1., 0., 0., 0.]])
-------------------------------
torch.Size([3, 6])
tensor([[1., 0., 1., 0., 0., 0.],[2., 0., 0., 0., 1., 0.],[3., 1., 0., 0., 0., 0.]])
-------------------------------
torch.Size([2, 5])
tensor([[1., 0., 1., 0., 0.],[2., 0., 0., 0., 1.]])
output-end

相关的算子

concat — 合并.
iloc — 筛选行列.
apply — 处理列数据.
fillna — 填补数值空缺.
get_dummies — 独热编码(自行测试显示)

PS: 略。

相关文章:

pytorch笔记篇:pandas之数据预处理(更新中)

pytorch笔记篇:pandas之数据预处理 pytorch笔记篇:pandas之数据预处理(更新中)测试例代码相关的算子 pytorch笔记篇:pandas之数据预处理(更新中) 测试例代码 print(train_data.iloc[0:4, [0, 1, 2, 3, -3, -2, -1]]) # (※1) 为什么test_da…...

【安全用电管理系统的应用如何保证用电安全】Acrel-6000安科瑞智慧安全用电解决方案

政策背景 国家部委 ※2017年5月3日国务院安委会召开电气火灾综合治理工作视频会议,决定在全国范围内组织开展为期3年的电气火灾综合治理工作。 公安部领导 ※公安部副部长李伟强调:向科技要战斗力,加快推进“智慧消防”建设不断提升火灾防控…...

数据分析之POWER Piovt透视表分析

将几个数据表之间进行关联 生成数据透视表 超级透视表这里的字段包含子字段 这三个月份在前面的解决办法 1.选中这三个月份,鼠标可移动的时候移动到后面 2.在原数据进行修改 添加列获取月份,借助month的函数双击日期 选择月份这列----按列排序-----选择月…...

机器人寻路算法双向A*(Bidirectional A*)算法的实现C++、Python、Matlab语言

机器人寻路算法双向A*(Bidirectional A*)算法的实现C、Python、Matlab语言 最近好久没更新,在搞华为的软件挑战赛(软挑),好卷只能说。去年还能混进32强,今年就比较迷糊了,这东西对我…...

智慧公厕产品的特点、应用场景

随着城市化进程的加速和智能科技的不断发展,智慧公厕作为城市管理的重要组成部分,逐渐成为了现代城市的一道靓丽风景线。它的特点和应用场景备受人们关注和喜爱。 智慧公厕的特点有哪些呢?首先,它智能化的设备和感应技术为其特点…...

vue 插槽(二)

渲染作用域​ 插槽内容可以访问到父组件的数据作用域&#xff0c;因为插槽内容本身是在父组件模板中定义的。举例来说&#xff1a; <span>{{ message }}</span> <FancyButton>{{ message }}</FancyButton> 这里的两个 {{ message }} 插值表达式渲染…...

【Java】MyBatis快速入门及详解

文章目录 1. MyBatis概述2. MyBatis快速入门2.1 创建项目2.2 添加依赖2.3 数据准备2.4 编写代码2.4.1 编写核心配置文件2.4.2 编写SQL映射文件2.4.3 编写Java代码 3. Mapper代理开发4. MyBatis核心配置文件5. 案例练习5.1 数据准备5.2 查询数据5.2.1 查询所有数据5.2.2 查询单条…...

Matlab将日尺度数据转化为月尺度数据

日尺度转化为月尺度 clcclear all% load datadata xlread(data.xlsx) % 例如该数据为1961-01-01至2022-12-31&#xff0c;共计22645天data data(:,1:3) % 该数据有22645行&#xff0c;数据分别为降水&#xff0c;气温&#xff0c;湿度等三列dt datetime(1961-01-01):datatim…...

【技巧】PyTorch限制GPU显存的可使用上限

转载请注明出处&#xff1a;小锋学长生活大爆炸[xfxuezhang.cn] 从 PyTorch 1.4 版本开始&#xff0c;引入了一个新的功能 torch.cuda.set_per_process_memory_fraction(fraction, device)&#xff0c;这个功能允许用户为特定的 GPU 设备设置进程可使用的显存上限比例。 测试代…...

深度理解文件操作

目录 文件 文件名&#xff1a; 标准流 文件指针 文件的打开和关闭 文件的顺序读写&#xff1a; 使用部分 文件的打开和关闭 文件 文件分两种&#xff0c;第一种是程序文件&#xff0c;后一种是数据文件。 程序文件&#xff1a;包括源程序文件&#xff08;后缀为.c&…...

【搜索引擎2】实现API方式调用ElasticSearch8接口

1、理解ElasticSearch各名词含义 ElasticSearch对比Mysql Mysql数据库Elastic SearchDatabase7.X版本前有Type&#xff0c;对比数据库中的表&#xff0c;新版取消了TableIndexRowDocumentColumnmapping Elasticsearch是使用Java开发的&#xff0c;8.1版本的ES需要JDK17及以上…...

配置小程序的服务器域名

准备工作 拥有一个已注册的域名&#xff1a;确保您已经注册了一个符合国家和地区相关法律法规要求的域名。 完成域名备案&#xff08;如有必要&#xff09;&#xff1a;根据国家和地区的法律法规&#xff0c;某些情况下可能需要对域名进行备案才能用于互联网服务。 配置 DNS&…...

政安晨:【深度学习神经网络基础】(一)—— 逐本溯源

政安晨的个人主页&#xff1a;政安晨 欢迎 &#x1f44d;点赞✍评论⭐收藏 收录专栏: 政安晨的机器学习笔记 希望政安晨的博客能够对您有所裨益&#xff0c;如有不足之处&#xff0c;欢迎在评论区提出指正&#xff01; 与计算机一样的古老历史 神经网络的出现可追溯到20世纪40年…...

技巧 Win10电脑打开SMB协议共享文件,手机端查看

一. 打开 SMB1.0/CIFS文件共享支持 ⏹如下图所示&#xff0c;打开SMB1.0/CIFS文件共享支持 二. 开启网络发现 ⏹开启网络发现&#xff0c;确保共享的文件能在局域网内被发现 三. 共享文件夹到局域网 ⏹根据需要勾选需要共享的文件夹&#xff0c;共享到局域网 四. 共享文件查…...

java实现MP4视频压缩

要在Java中实现MP4视频压缩,您可以使用一些第三方库,比如ffmpeg或Xuggler等。下面是使用ffmpeg库进行MP4视频压缩的示例代码: java import java.io.BufferedReader; import java.io.InputStreamReader; public class MP4Compressor { public static void main(String[] args)…...

云电脑安全性怎么样?企业如何选择安全的云电脑

云电脑在保障企业数字资产安全方面&#xff0c;采取了一系列严谨而全面的措施。随着企业对于数字化转型的深入推进&#xff0c;数字资产的安全问题日益凸显&#xff0c;而云电脑作为一种新兴的办公模式&#xff0c;正是为解决这一问题而生。云电脑安全吗&#xff1f;可以放心使…...

【python】pygame游戏框架

文章目录 pygame常用模块pygame:主模块,包含初始化、退出、时间、事件等函数。pygame.cdrom 访问光驱pygame.cursors 加载光驱pygame.joystick 操作游戏手柄或者类似的东西pygame.mouse:鼠标模块,包含获取、设置、控制等函数。pygame.key 键盘模块pygame.display:显示模块…...

计算机OSI7层协议模型

OSI模型是由国际标准化组织&#xff08;ISO&#xff09;制定的一种网络通信的标准体系&#xff0c;旨在确保不同厂商的网络设备能够互联互通。该模型将网络通信划分为七个独立的层次&#xff0c;每一层负责特定的功能。这种分层设计使得网络协议的开发、维护和升级更加容易。 …...

书生·浦语大模型实战营之全链路开源体系

书生浦语大模型实战营之全链路开源体系 为了推动大模型在更多行业落地开花&#xff0c;让开发者们更高效的学习大模型的开发与应用&#xff0c;上海人工智能实验室重磅推出书生浦语大模型实战营&#xff0c;为广大开发者搭建大模型学习和实践开发的平台&#xff0c;两周时间带…...

/.git/config文件目录

git config可以看做是一个配置工具&#xff0c;它允许用户获得和设置与git相关的配置选项&#xff0c;是我们灵活使用git软件的第一步...

Python|GIF 解析与构建(5):手搓截屏和帧率控制

目录 Python&#xff5c;GIF 解析与构建&#xff08;5&#xff09;&#xff1a;手搓截屏和帧率控制 一、引言 二、技术实现&#xff1a;手搓截屏模块 2.1 核心原理 2.2 代码解析&#xff1a;ScreenshotData类 2.2.1 截图函数&#xff1a;capture_screen 三、技术实现&…...

【Java学习笔记】Arrays类

Arrays 类 1. 导入包&#xff1a;import java.util.Arrays 2. 常用方法一览表 方法描述Arrays.toString()返回数组的字符串形式Arrays.sort()排序&#xff08;自然排序和定制排序&#xff09;Arrays.binarySearch()通过二分搜索法进行查找&#xff08;前提&#xff1a;数组是…...

【位运算】消失的两个数字(hard)

消失的两个数字&#xff08;hard&#xff09; 题⽬描述&#xff1a;解法&#xff08;位运算&#xff09;&#xff1a;Java 算法代码&#xff1a;更简便代码 题⽬链接&#xff1a;⾯试题 17.19. 消失的两个数字 题⽬描述&#xff1a; 给定⼀个数组&#xff0c;包含从 1 到 N 所有…...

如何将联系人从 iPhone 转移到 Android

从 iPhone 换到 Android 手机时&#xff0c;你可能需要保留重要的数据&#xff0c;例如通讯录。好在&#xff0c;将通讯录从 iPhone 转移到 Android 手机非常简单&#xff0c;你可以从本文中学习 6 种可靠的方法&#xff0c;确保随时保持连接&#xff0c;不错过任何信息。 第 1…...

Psychopy音频的使用

Psychopy音频的使用 本文主要解决以下问题&#xff1a; 指定音频引擎与设备&#xff1b;播放音频文件 本文所使用的环境&#xff1a; Python3.10 numpy2.2.6 psychopy2025.1.1 psychtoolbox3.0.19.14 一、音频配置 Psychopy文档链接为Sound - for audio playback — Psy…...

HTML前端开发:JavaScript 常用事件详解

作为前端开发的核心&#xff0c;JavaScript 事件是用户与网页交互的基础。以下是常见事件的详细说明和用法示例&#xff1a; 1. onclick - 点击事件 当元素被单击时触发&#xff08;左键点击&#xff09; button.onclick function() {alert("按钮被点击了&#xff01;&…...

汇编常见指令

汇编常见指令 一、数据传送指令 指令功能示例说明MOV数据传送MOV EAX, 10将立即数 10 送入 EAXMOV [EBX], EAX将 EAX 值存入 EBX 指向的内存LEA加载有效地址LEA EAX, [EBX4]将 EBX4 的地址存入 EAX&#xff08;不访问内存&#xff09;XCHG交换数据XCHG EAX, EBX交换 EAX 和 EB…...

mac 安装homebrew (nvm 及git)

mac 安装nvm 及git 万恶之源 mac 安装这些东西离不开Xcode。及homebrew 一、先说安装git步骤 通用&#xff1a; 方法一&#xff1a;使用 Homebrew 安装 Git&#xff08;推荐&#xff09; 步骤如下&#xff1a;打开终端&#xff08;Terminal.app&#xff09; 1.安装 Homebrew…...

vue3 daterange正则踩坑

<el-form-item label"空置时间" prop"vacantTime"> <el-date-picker v-model"form.vacantTime" type"daterange" start-placeholder"开始日期" end-placeholder"结束日期" clearable :editable"fal…...

恶补电源:1.电桥

一、元器件的选择 搜索并选择电桥&#xff0c;再multisim中选择FWB&#xff0c;就有各种型号的电桥: 电桥是用来干嘛的呢&#xff1f; 它是一个由四个二极管搭成的“桥梁”形状的电路&#xff0c;用来把交流电&#xff08;AC&#xff09;变成直流电&#xff08;DC&#xff09;。…...