当前位置: 首页 > news >正文

pytorch笔记篇:pandas之数据预处理(更新中)

pytorch笔记篇:pandas之数据预处理

  • pytorch笔记篇:pandas之数据预处理(更新中)
    • 测试例代码
    • 相关的算子

pytorch笔记篇:pandas之数据预处理(更新中)

测试例代码

print(train_data.iloc[0:4, [0, 1, 2, 3, -3, -2, -1]])
# (1) 为什么test_data的列最后不是-1,是因为test_data没有价格这个列项
all_features = pd.concat((train_data.iloc[:, 1:-1], test_data.iloc[:, 1:]))
print('-----------------------------------------------')
print(all_features.iloc[0:4, [0, 1, 2, 3, -3, -2, -1]])# (2) 获取到不是数值的列index]
numeric_features = all_features.dtypes[all_features.dtypes != 'object'].index# print('++++++++++++++++++++++++')
# (3) print(all_features[numeric_features].iloc[0:3, [0,1,2,3,-3,-2,-1]])
# print('----------------------')
all_features[numeric_features] = all_features[numeric_features].apply(lambda x: (x - x.mean()) / (x.std()))
# print(all_features[numeric_features].iloc[0:3, [0,1,2,3,-3,-2,-1]])
# input()# (4) 在标准化数据之后,所有均值消失,因此我们可以将缺失值设置为0
all_features[numeric_features] = all_features[numeric_features].fillna(0)# (5) dummies & pd to tensor
print('++++++++++  demo test dummies  +++++++++++')
test = pd.DataFrame({'“x”':[1,2,3,4,5, 6], "seasion":['here', 'over', '', 'next', '', 'here']})
print(test)
print('-------------------------------')
test = pd.get_dummies(test, dummy_na=True)
print(test)
test = test*1
print(test)
print('++++++++++  test trans to tensor  +++++++++++')
# test1 = torch.tensor(test)
# 全部转化
test1 = torch.tensor(test.values, dtype=torch.float32)
print(test1.shape)
print(test1)
print('-------------------------------')
# 不用iloc的话就是光是行处理
test2 = torch.tensor(test[:3].values, dtype=torch.float32)
print(test2.shape)
print(test2)
print('-------------------------------')
# 特定行列转化需要熟练运动iloc
test3 = torch.tensor(test.iloc[:2, :-1].values, dtype=torch.float32)
print(test3.shape)
print(test3)
input()output-begin:
(1460, 81)
(1459, 80)Id  MSSubClass MSZoning  LotFrontage SaleType SaleCondition  SalePrice
0   1          60       RL         65.0       WD        Normal     208500
1   2          20       RL         80.0       WD        Normal     181500
2   3          60       RL         68.0       WD        Normal     223500
3   4          70       RL         60.0       WD       Abnorml     140000
-----------------------------------------------MSSubClass MSZoning  LotFrontage  LotArea  YrSold SaleType SaleCondition
0          60       RL         65.0     8450    2008       WD        Normal
1          20       RL         80.0     9600    2007       WD        Normal
2          60       RL         68.0    11250    2008       WD        Normal
3          70       RL         60.0     9550    2006       WD       Abnorml
++++++++++  demo test dummies  +++++++++++“x” seasion
0    1    here
1    2    over
2    3        
3    4    next
4    5        
5    6    here
-------------------------------“x”  seasion_  seasion_here  seasion_next  seasion_over  seasion_nan
0    1     False          True         False         False        False
1    2     False         False         False          True        False
2    3      True         False         False         False        False
3    4     False         False          True         False        False
4    5      True         False         False         False        False
5    6     False          True         False         False        False“x”  seasion_  seasion_here  seasion_next  seasion_over  seasion_nan
0    1         0             1             0             0            0
1    2         0             0             0             1            0
2    3         1             0             0             0            0
3    4         0             0             1             0            0
4    5         1             0             0             0            0
5    6         0             1             0             0            0
++++++++++  test trans to tensor  +++++++++++
torch.Size([6, 6])
tensor([[1., 0., 1., 0., 0., 0.],[2., 0., 0., 0., 1., 0.],[3., 1., 0., 0., 0., 0.],[4., 0., 0., 1., 0., 0.],[5., 1., 0., 0., 0., 0.],[6., 0., 1., 0., 0., 0.]])
-------------------------------
torch.Size([3, 6])
tensor([[1., 0., 1., 0., 0., 0.],[2., 0., 0., 0., 1., 0.],[3., 1., 0., 0., 0., 0.]])
-------------------------------
torch.Size([2, 5])
tensor([[1., 0., 1., 0., 0.],[2., 0., 0., 0., 1.]])
output-end

相关的算子

concat — 合并.
iloc — 筛选行列.
apply — 处理列数据.
fillna — 填补数值空缺.
get_dummies — 独热编码(自行测试显示)

PS: 略。

相关文章:

pytorch笔记篇:pandas之数据预处理(更新中)

pytorch笔记篇:pandas之数据预处理 pytorch笔记篇:pandas之数据预处理(更新中)测试例代码相关的算子 pytorch笔记篇:pandas之数据预处理(更新中) 测试例代码 print(train_data.iloc[0:4, [0, 1, 2, 3, -3, -2, -1]]) # (※1) 为什么test_da…...

【安全用电管理系统的应用如何保证用电安全】Acrel-6000安科瑞智慧安全用电解决方案

政策背景 国家部委 ※2017年5月3日国务院安委会召开电气火灾综合治理工作视频会议,决定在全国范围内组织开展为期3年的电气火灾综合治理工作。 公安部领导 ※公安部副部长李伟强调:向科技要战斗力,加快推进“智慧消防”建设不断提升火灾防控…...

数据分析之POWER Piovt透视表分析

将几个数据表之间进行关联 生成数据透视表 超级透视表这里的字段包含子字段 这三个月份在前面的解决办法 1.选中这三个月份,鼠标可移动的时候移动到后面 2.在原数据进行修改 添加列获取月份,借助month的函数双击日期 选择月份这列----按列排序-----选择月…...

机器人寻路算法双向A*(Bidirectional A*)算法的实现C++、Python、Matlab语言

机器人寻路算法双向A*(Bidirectional A*)算法的实现C、Python、Matlab语言 最近好久没更新,在搞华为的软件挑战赛(软挑),好卷只能说。去年还能混进32强,今年就比较迷糊了,这东西对我…...

智慧公厕产品的特点、应用场景

随着城市化进程的加速和智能科技的不断发展,智慧公厕作为城市管理的重要组成部分,逐渐成为了现代城市的一道靓丽风景线。它的特点和应用场景备受人们关注和喜爱。 智慧公厕的特点有哪些呢?首先,它智能化的设备和感应技术为其特点…...

vue 插槽(二)

渲染作用域​ 插槽内容可以访问到父组件的数据作用域&#xff0c;因为插槽内容本身是在父组件模板中定义的。举例来说&#xff1a; <span>{{ message }}</span> <FancyButton>{{ message }}</FancyButton> 这里的两个 {{ message }} 插值表达式渲染…...

【Java】MyBatis快速入门及详解

文章目录 1. MyBatis概述2. MyBatis快速入门2.1 创建项目2.2 添加依赖2.3 数据准备2.4 编写代码2.4.1 编写核心配置文件2.4.2 编写SQL映射文件2.4.3 编写Java代码 3. Mapper代理开发4. MyBatis核心配置文件5. 案例练习5.1 数据准备5.2 查询数据5.2.1 查询所有数据5.2.2 查询单条…...

Matlab将日尺度数据转化为月尺度数据

日尺度转化为月尺度 clcclear all% load datadata xlread(data.xlsx) % 例如该数据为1961-01-01至2022-12-31&#xff0c;共计22645天data data(:,1:3) % 该数据有22645行&#xff0c;数据分别为降水&#xff0c;气温&#xff0c;湿度等三列dt datetime(1961-01-01):datatim…...

【技巧】PyTorch限制GPU显存的可使用上限

转载请注明出处&#xff1a;小锋学长生活大爆炸[xfxuezhang.cn] 从 PyTorch 1.4 版本开始&#xff0c;引入了一个新的功能 torch.cuda.set_per_process_memory_fraction(fraction, device)&#xff0c;这个功能允许用户为特定的 GPU 设备设置进程可使用的显存上限比例。 测试代…...

深度理解文件操作

目录 文件 文件名&#xff1a; 标准流 文件指针 文件的打开和关闭 文件的顺序读写&#xff1a; 使用部分 文件的打开和关闭 文件 文件分两种&#xff0c;第一种是程序文件&#xff0c;后一种是数据文件。 程序文件&#xff1a;包括源程序文件&#xff08;后缀为.c&…...

【搜索引擎2】实现API方式调用ElasticSearch8接口

1、理解ElasticSearch各名词含义 ElasticSearch对比Mysql Mysql数据库Elastic SearchDatabase7.X版本前有Type&#xff0c;对比数据库中的表&#xff0c;新版取消了TableIndexRowDocumentColumnmapping Elasticsearch是使用Java开发的&#xff0c;8.1版本的ES需要JDK17及以上…...

配置小程序的服务器域名

准备工作 拥有一个已注册的域名&#xff1a;确保您已经注册了一个符合国家和地区相关法律法规要求的域名。 完成域名备案&#xff08;如有必要&#xff09;&#xff1a;根据国家和地区的法律法规&#xff0c;某些情况下可能需要对域名进行备案才能用于互联网服务。 配置 DNS&…...

政安晨:【深度学习神经网络基础】(一)—— 逐本溯源

政安晨的个人主页&#xff1a;政安晨 欢迎 &#x1f44d;点赞✍评论⭐收藏 收录专栏: 政安晨的机器学习笔记 希望政安晨的博客能够对您有所裨益&#xff0c;如有不足之处&#xff0c;欢迎在评论区提出指正&#xff01; 与计算机一样的古老历史 神经网络的出现可追溯到20世纪40年…...

技巧 Win10电脑打开SMB协议共享文件,手机端查看

一. 打开 SMB1.0/CIFS文件共享支持 ⏹如下图所示&#xff0c;打开SMB1.0/CIFS文件共享支持 二. 开启网络发现 ⏹开启网络发现&#xff0c;确保共享的文件能在局域网内被发现 三. 共享文件夹到局域网 ⏹根据需要勾选需要共享的文件夹&#xff0c;共享到局域网 四. 共享文件查…...

java实现MP4视频压缩

要在Java中实现MP4视频压缩,您可以使用一些第三方库,比如ffmpeg或Xuggler等。下面是使用ffmpeg库进行MP4视频压缩的示例代码: java import java.io.BufferedReader; import java.io.InputStreamReader; public class MP4Compressor { public static void main(String[] args)…...

云电脑安全性怎么样?企业如何选择安全的云电脑

云电脑在保障企业数字资产安全方面&#xff0c;采取了一系列严谨而全面的措施。随着企业对于数字化转型的深入推进&#xff0c;数字资产的安全问题日益凸显&#xff0c;而云电脑作为一种新兴的办公模式&#xff0c;正是为解决这一问题而生。云电脑安全吗&#xff1f;可以放心使…...

【python】pygame游戏框架

文章目录 pygame常用模块pygame:主模块,包含初始化、退出、时间、事件等函数。pygame.cdrom 访问光驱pygame.cursors 加载光驱pygame.joystick 操作游戏手柄或者类似的东西pygame.mouse:鼠标模块,包含获取、设置、控制等函数。pygame.key 键盘模块pygame.display:显示模块…...

计算机OSI7层协议模型

OSI模型是由国际标准化组织&#xff08;ISO&#xff09;制定的一种网络通信的标准体系&#xff0c;旨在确保不同厂商的网络设备能够互联互通。该模型将网络通信划分为七个独立的层次&#xff0c;每一层负责特定的功能。这种分层设计使得网络协议的开发、维护和升级更加容易。 …...

书生·浦语大模型实战营之全链路开源体系

书生浦语大模型实战营之全链路开源体系 为了推动大模型在更多行业落地开花&#xff0c;让开发者们更高效的学习大模型的开发与应用&#xff0c;上海人工智能实验室重磅推出书生浦语大模型实战营&#xff0c;为广大开发者搭建大模型学习和实践开发的平台&#xff0c;两周时间带…...

/.git/config文件目录

git config可以看做是一个配置工具&#xff0c;它允许用户获得和设置与git相关的配置选项&#xff0c;是我们灵活使用git软件的第一步...

谷歌浏览器插件

项目中有时候会用到插件 sync-cookie-extension1.0.0&#xff1a;开发环境同步测试 cookie 至 localhost&#xff0c;便于本地请求服务携带 cookie 参考地址&#xff1a;https://juejin.cn/post/7139354571712757767 里面有源码下载下来&#xff0c;加在到扩展即可使用FeHelp…...

React 第五十五节 Router 中 useAsyncError的使用详解

前言 useAsyncError 是 React Router v6.4 引入的一个钩子&#xff0c;用于处理异步操作&#xff08;如数据加载&#xff09;中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误&#xff1a;捕获在 loader 或 action 中发生的异步错误替…...

23-Oracle 23 ai 区块链表(Blockchain Table)

小伙伴有没有在金融强合规的领域中遇见&#xff0c;必须要保持数据不可变&#xff0c;管理员都无法修改和留痕的要求。比如医疗的电子病历中&#xff0c;影像检查检验结果不可篡改行的&#xff0c;药品追溯过程中数据只可插入无法删除的特性需求&#xff1b;登录日志、修改日志…...

解锁数据库简洁之道:FastAPI与SQLModel实战指南

在构建现代Web应用程序时&#xff0c;与数据库的交互无疑是核心环节。虽然传统的数据库操作方式&#xff08;如直接编写SQL语句与psycopg2交互&#xff09;赋予了我们精细的控制权&#xff0c;但在面对日益复杂的业务逻辑和快速迭代的需求时&#xff0c;这种方式的开发效率和可…...

DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI

前一阵子在百度 AI 开发者大会上&#xff0c;看到基于小智 AI DIY 玩具的演示&#xff0c;感觉有点意思&#xff0c;想着自己也来试试。 如果只是想烧录现成的固件&#xff0c;乐鑫官方除了提供了 Windows 版本的 Flash 下载工具 之外&#xff0c;还提供了基于网页版的 ESP LA…...

深入解析C++中的extern关键字:跨文件共享变量与函数的终极指南

&#x1f680; C extern 关键字深度解析&#xff1a;跨文件编程的终极指南 &#x1f4c5; 更新时间&#xff1a;2025年6月5日 &#x1f3f7;️ 标签&#xff1a;C | extern关键字 | 多文件编程 | 链接与声明 | 现代C 文章目录 前言&#x1f525;一、extern 是什么&#xff1f;&…...

OPenCV CUDA模块图像处理-----对图像执行 均值漂移滤波(Mean Shift Filtering)函数meanShiftFiltering()

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 算法描述 在 GPU 上对图像执行 均值漂移滤波&#xff08;Mean Shift Filtering&#xff09;&#xff0c;用于图像分割或平滑处理。 该函数将输入图像中的…...

面向无人机海岸带生态系统监测的语义分割基准数据集

描述&#xff1a;海岸带生态系统的监测是维护生态平衡和可持续发展的重要任务。语义分割技术在遥感影像中的应用为海岸带生态系统的精准监测提供了有效手段。然而&#xff0c;目前该领域仍面临一个挑战&#xff0c;即缺乏公开的专门面向海岸带生态系统的语义分割基准数据集。受…...

安全突围:重塑内生安全体系:齐向东在2025年BCS大会的演讲

文章目录 前言第一部分&#xff1a;体系力量是突围之钥第一重困境是体系思想落地不畅。第二重困境是大小体系融合瓶颈。第三重困境是“小体系”运营梗阻。 第二部分&#xff1a;体系矛盾是突围之障一是数据孤岛的障碍。二是投入不足的障碍。三是新旧兼容难的障碍。 第三部分&am…...

免费PDF转图片工具

免费PDF转图片工具 一款简单易用的PDF转图片工具&#xff0c;可以将PDF文件快速转换为高质量PNG图片。无需安装复杂的软件&#xff0c;也不需要在线上传文件&#xff0c;保护您的隐私。 工具截图 主要特点 &#x1f680; 快速转换&#xff1a;本地转换&#xff0c;无需等待上…...