PCA+DBO+DBSCN聚类,蜣螂优化算法DBO优化DBSCN聚类,适合学习,也适合发paper!
PCA+DBO+DBSCN聚类,蜣螂优化算法DBO优化DBSCN聚类,适合学习,也适合发paper!
一、蜣螂优化算法
摘要:受蜣螂滚球、跳舞、觅食、偷窃和繁殖等行为的启发,提出了一种新的基于种群的优化算法(Dung Beetle Optimizer, DBO)。新提出的DBO算法兼顾了全局探索和局部开发,具有收敛速度快和求解精度高的特点。采用一系列著名的数学测试函数(包括23个基准函数和29个CEC-BC-2017测试函数)来评估DBO算法的搜索能力。仿真实验结果表明,DBO算法在收敛速度、求解精度和稳定性方面均表现出与当前主流优化算法相当的性能。此外,采用Wilcoxon符号秩检验和Friedman检验对算法的实验结果进行评估,证明了DBO算法相对于当前流行的其他优化技术的优越性。为了进一步说明DBO算法的实际应用潜力,将DBO算法成功应用于3个工程设计问题。实验结果表明,所提DBO算法能够有效地处理实际应用问题。
文献来源:Dung beetle optimizer: a new meta-heuristic algorithm for global optimization。
DOI:10.1007/s11227-022-04959-6。
二、DBSCN聚类
DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一种基于密度的聚类算法。它的核心原理是根据数据点周围的密度来确定聚类。在DBSCAN中,密度高的区域被认为是聚类,而密度低的区域则被认为是噪声。
DBSCAN算法不需要人为选择簇的个数,且能够发现任意形状的簇,这是它相对于其他聚类算法如K-means和层次聚类的一个显著优势。例如,对于K-means难以处理的一些复杂形状,如笑脸形状,DBSCAN可以很好地识别和处理。
在DBSCAN中,有两个重要的参数:半径范围epsilon和点个数minpts,手动设置较复杂。
DBSCAN的应用场景非常广泛,包括但不限于空间数据分析、图像分割、社交网络分析、市场细分以及物联网数据分析等。在地理信息系统(GIS)中,DBSCAN可以用于分析地理数据,如城市人口分布和地质特征;在图像处理中,它可以用于对像素进行聚类,实现图像分割;在市场营销中,DBSCAN可以帮助将客户分成不同的细分市场,从而更好地了解他们的需求和行为模式。DBSCAN是一种强大且灵活的聚类算法,适用于各种复杂的聚类任务。
三、主成分分析PCA
主成分分析(Principal Component Analysis),是一种常用的数据降维方法。它的主要思想是通过线性变换将原始的高维数据映射到一个低维空间中,同时尽可能地保留原始数据的主要特征信息。
具体来说,PCA降维的过程可以分为以下几个步骤:
数据标准化:首先,对原始数据进行标准化处理,消除不同特征之间的量纲差异,使得每个特征都具有相同的权重。
计算协方差矩阵:接着,计算标准化后数据的协方差矩阵。协方差矩阵反映了不同特征之间的相关性,是PCA降维的关键。
计算特征值和特征向量:对协方差矩阵进行特征分解,得到特征值和特征向量。特征值的大小代表了对应特征向量方向上的数据方差,即数据的离散程度。
选择主成分:根据特征值的大小,选择前k个最大的特征值对应的特征向量作为主成分。这些主成分代表了数据中的主要变化方向,能够最大程度地保留原始数据的信息。
数据投影:最后,将原始数据投影到选定的主成分上,得到降维后的数据。这个过程可以通过将原始数据乘以主成分矩阵来实现。
PCA降维的优点在于它简单易懂,计算效率高,且能够有效地降低数据的维度,减少计算复杂性和存储空间。同时,PCA降维还能够去除部分噪声和冗余特征,提高数据的可解释性和可视化效果。因此,PCA降维在数据分析、机器学习、图像处理等领域都有广泛的应用。需要注意的是,PCA降维是一种无监督学习方法,它并不考虑数据的标签信息。因此,在某些情况下,PCA降维可能会丢失一些与标签相关的信息。此外,PCA降维对于非线性数据的处理能力有限,对于复杂的数据结构可能需要采用其他降维方法。
四、PCA+DBO+ DBSCN聚类
✨ 核心亮点 ✨
降维至精华:我们首先使用PCA将复杂的数据集降维到2维,保留了数据的主要信息,使其可视化变得简单直观。
优化聚类:接着,采用蜣螂优化算法DBO对DBSCN聚类进行优化,利用轮廓系数信息构建目标函数,自动寻找最佳的半径范围epsilon、点个数minpts和距离度量,以达到最优的数据分组效果。
聚类参数:可以修改聚类参数的优化范围。
选择两个距离度量进行优化: cityblock(Block距离,也叫绝对值距离)、cosine(夹角余弦)。
代码详细中文注释,高效管理,可读性和二次开发都很好,部分代码如下:
%%
clc; clear; close all;
% 加载Excel数据
data = xlsread('数据.xlsx');
% 假设全部列为特征数据
X = data;
% 数据标准化
X_standardized = (X - mean(X)) ./ std(X);
% 应用PCA进行降维
[coeff, score, latent, tsquared, explained] = pca(X_standardized);
% 提取前两个主成分
Z = score(:, 1:2);
% 初始化DBO参数
N = 10; % 种群数量
T = 50; % 最大迭代次数
% 第一个是半径范围epsilon,第二个是点个数minpts,第三个是最佳距离度量
LB=[0.01,2,1]; % 变量下界
UB=[0.5,10,2]; % 变量上界
nvars=length(LB);
fobj=@fitness;
% 使用DBO优化算法优化DBSCN进行聚类,优化最佳聚类数和最佳距离度量
[fMin,index,Convergence_curve,pos]=DBO(N,T,LB,UB,nvars,fobj,data,Z);
% 计算轮廓系数
sc_xishu = mean(silhouette(data, index'));
% 确定独特的聚类数
a = unique(index);
op_cluster_num = length(a); % 优化后聚类个数
C = cell(1, length(a));
运行结果如下:
蜣螂优化算法DBO优化DBSCN结果:
蜣螂优化算法DBO优化DBSCN收敛曲线:
优化结果输出(半径范围epsilon、点个数minpts和距离度量):
使用数据如下:
五、完整代码获取
点击:PCA+DBO+DBSCN聚类https://mbd.pub/o/bread/ZZ2Wmp5x
相关文章:

PCA+DBO+DBSCN聚类,蜣螂优化算法DBO优化DBSCN聚类,适合学习,也适合发paper!
PCADBODBSCN聚类,蜣螂优化算法DBO优化DBSCN聚类,适合学习,也适合发paper! 一、蜣螂优化算法 摘要:受蜣螂滚球、跳舞、觅食、偷窃和繁殖等行为的启发,提出了一种新的基于种群的优化算法(Dung Beetle Optim…...
创建数据库与表单以及管理表单和数据
一、用于创建数据库的命令以及作用 命令作用CREATE DATABASE 数据库名称创建新的数据库DESCRIBE 表单名称描述表单UPDATE 表单名称SET attribute新值WHERE attribute>原始值更新表单中的数据USE 数据库名称指定使用的数据库SHOW databases显示当前已有的数据库SHOW tables显…...
Milvus+ATTU环境搭建
1.使用Docker Compose安装Milvus Standalone 下载安装单机版milvus向量数据库 https://milvus.io/docs/install_standalone-docker.md wget https://github.com/milvus-io/milvus/releases/download/v2.2.12/milvus-standalone-docker-compose.yml -O docker-compose.yml sud…...

Python 基于 OpenCV 视觉图像处理实战 之 OpenCV 简单实战案例 之八 简单水彩画效果
Python 基于 OpenCV 视觉图像处理实战 之 OpenCV 简单实战案例 之八 简单水彩画效果 目录 Python 基于 OpenCV 视觉图像处理实战 之 OpenCV 简单实战案例 之八 简单水彩画效果 一、简单介绍 二、简单图像浮雕效果实现原理 三、简单水彩画效果案例实现简单步骤 四、注意事项…...

Chrome浏览器 安装Vue插件vue-devtools
前言 vue-devtools 是一个为 Vue.js 开发者设计的 Chrome 插件。它可以让你更轻松地审查和调试 Vue 应用程序。与普通的浏览器控制台工具不同,Vue.js devtools 专为 Vue 的响应性数据和组件结构量身定做。 1. 功能介绍 组件树浏览:这个功能可以让你查…...

相册清理大师-手机重复照片整理、垃圾清理软件
相册清理大师是一款超级简单实用的照片视频整理工具。通过便捷的操作手势,帮助你极速整理相册中的照片和视频、释放手机存储空间。 【功能简介】 向上滑动:删除不要的照片 向左滑动:切换下一张照片 向右滑动:返回上一张照片 整理分…...

【GitLab】Ubuntu 22.04 快速安装 GitLab
在 Ubuntu 22.04 上安装最新版本的 GitLab,可以按照以下步骤操作: 1. 更新系统: 在终端中执行以下命令以确保系统是最新的: sudo apt update sudo apt upgrade2. 安装依赖: 安装 GitLab 所需的依赖包: …...

Linux重点思考(下)--shell脚本使用以及内核开发
Linux重点思考(下)--shell脚本使用和组合拳 shell脚本的基础算法shell脚本写123...n的值,说思路Shell 脚本用于执行服务器性能测试的死循环Shell 脚本备份和定时清理垃圾文件 shell脚本的内核开发正向映射反向映射 shell脚本的基础算法 shell脚本写123……...
2024世界技能大赛某省选拔赛“网络安全项目”B模块--应急响应解析
广东省第三届职业技能大赛“网络安全项目”B模块任务书 PS: 关注鱼影安全第一部分 网络安全事件响应任务 1:应急响应第二部分 数字取证调查第三部分 应用程序安全:需要环境可以私信博主~PS: 关注鱼影安全 模块 B 竞赛项目试题 本文件为:2024世界技能大赛某省选拔赛-模块 B …...

苹果与百度合作,将在iPhone 16中使用生成式AI
3月25日,《科创板日报》消息,苹果将与百度进行技术合作,为今年即将发布的iPhone16、Mac系统和iOS 18提供生成式AI(AIGC)功能。 据悉,苹果曾与阿里巴巴以及另外一家国产大模型厂商进行了技术合作洽谈。最终…...

java中的单例模式
一、描述 单例模式就是程序中一个类只能有一个对象实例 举个例子: //引出单例模式,一个类中只能由一个对象实例 public class Singleton1 {private static Singleton1 instance new Singleton1();//通过这个方法来获取实例public static Singleton1 getInstance…...
pytorch笔记篇:pandas之数据预处理(更新中)
pytorch笔记篇:pandas之数据预处理 pytorch笔记篇:pandas之数据预处理(更新中)测试例代码相关的算子 pytorch笔记篇:pandas之数据预处理(更新中) 测试例代码 print(train_data.iloc[0:4, [0, 1, 2, 3, -3, -2, -1]]) # (※1) 为什么test_da…...

【安全用电管理系统的应用如何保证用电安全】Acrel-6000安科瑞智慧安全用电解决方案
政策背景 国家部委 ※2017年5月3日国务院安委会召开电气火灾综合治理工作视频会议,决定在全国范围内组织开展为期3年的电气火灾综合治理工作。 公安部领导 ※公安部副部长李伟强调:向科技要战斗力,加快推进“智慧消防”建设不断提升火灾防控…...

数据分析之POWER Piovt透视表分析
将几个数据表之间进行关联 生成数据透视表 超级透视表这里的字段包含子字段 这三个月份在前面的解决办法 1.选中这三个月份,鼠标可移动的时候移动到后面 2.在原数据进行修改 添加列获取月份,借助month的函数双击日期 选择月份这列----按列排序-----选择月…...

机器人寻路算法双向A*(Bidirectional A*)算法的实现C++、Python、Matlab语言
机器人寻路算法双向A*(Bidirectional A*)算法的实现C、Python、Matlab语言 最近好久没更新,在搞华为的软件挑战赛(软挑),好卷只能说。去年还能混进32强,今年就比较迷糊了,这东西对我…...

智慧公厕产品的特点、应用场景
随着城市化进程的加速和智能科技的不断发展,智慧公厕作为城市管理的重要组成部分,逐渐成为了现代城市的一道靓丽风景线。它的特点和应用场景备受人们关注和喜爱。 智慧公厕的特点有哪些呢?首先,它智能化的设备和感应技术为其特点…...
vue 插槽(二)
渲染作用域 插槽内容可以访问到父组件的数据作用域,因为插槽内容本身是在父组件模板中定义的。举例来说: <span>{{ message }}</span> <FancyButton>{{ message }}</FancyButton> 这里的两个 {{ message }} 插值表达式渲染…...

【Java】MyBatis快速入门及详解
文章目录 1. MyBatis概述2. MyBatis快速入门2.1 创建项目2.2 添加依赖2.3 数据准备2.4 编写代码2.4.1 编写核心配置文件2.4.2 编写SQL映射文件2.4.3 编写Java代码 3. Mapper代理开发4. MyBatis核心配置文件5. 案例练习5.1 数据准备5.2 查询数据5.2.1 查询所有数据5.2.2 查询单条…...

Matlab将日尺度数据转化为月尺度数据
日尺度转化为月尺度 clcclear all% load datadata xlread(data.xlsx) % 例如该数据为1961-01-01至2022-12-31,共计22645天data data(:,1:3) % 该数据有22645行,数据分别为降水,气温,湿度等三列dt datetime(1961-01-01):datatim…...

【技巧】PyTorch限制GPU显存的可使用上限
转载请注明出处:小锋学长生活大爆炸[xfxuezhang.cn] 从 PyTorch 1.4 版本开始,引入了一个新的功能 torch.cuda.set_per_process_memory_fraction(fraction, device),这个功能允许用户为特定的 GPU 设备设置进程可使用的显存上限比例。 测试代…...
浅谈 React Hooks
React Hooks 是 React 16.8 引入的一组 API,用于在函数组件中使用 state 和其他 React 特性(例如生命周期方法、context 等)。Hooks 通过简洁的函数接口,解决了状态与 UI 的高度解耦,通过函数式编程范式实现更灵活 Rea…...

shell脚本--常见案例
1、自动备份文件或目录 2、批量重命名文件 3、查找并删除指定名称的文件: 4、批量删除文件 5、查找并替换文件内容 6、批量创建文件 7、创建文件夹并移动文件 8、在文件夹中查找文件...
在HarmonyOS ArkTS ArkUI-X 5.0及以上版本中,手势开发全攻略:
在 HarmonyOS 应用开发中,手势交互是连接用户与设备的核心纽带。ArkTS 框架提供了丰富的手势处理能力,既支持点击、长按、拖拽等基础单一手势的精细控制,也能通过多种绑定策略解决父子组件的手势竞争问题。本文将结合官方开发文档,…...

循环冗余码校验CRC码 算法步骤+详细实例计算
通信过程:(白话解释) 我们将原始待发送的消息称为 M M M,依据发送接收消息双方约定的生成多项式 G ( x ) G(x) G(x)(意思就是 G ( x ) G(x) G(x) 是已知的)࿰…...

Opencv中的addweighted函数
一.addweighted函数作用 addweighted()是OpenCV库中用于图像处理的函数,主要功能是将两个输入图像(尺寸和类型相同)按照指定的权重进行加权叠加(图像融合),并添加一个标量值&#x…...

对WWDC 2025 Keynote 内容的预测
借助我们以往对苹果公司发展路径的深入研究经验,以及大语言模型的分析能力,我们系统梳理了多年来苹果 WWDC 主题演讲的规律。在 WWDC 2025 即将揭幕之际,我们让 ChatGPT 对今年的 Keynote 内容进行了一个初步预测,聊作存档。等到明…...
Python如何给视频添加音频和字幕
在Python中,给视频添加音频和字幕可以使用电影文件处理库MoviePy和字幕处理库Subtitles。下面将详细介绍如何使用这些库来实现视频的音频和字幕添加,包括必要的代码示例和详细解释。 环境准备 在开始之前,需要安装以下Python库:…...

Linux --进程控制
本文从以下五个方面来初步认识进程控制: 目录 进程创建 进程终止 进程等待 进程替换 模拟实现一个微型shell 进程创建 在Linux系统中我们可以在一个进程使用系统调用fork()来创建子进程,创建出来的进程就是子进程,原来的进程为父进程。…...

关键领域软件测试的突围之路:如何破解安全与效率的平衡难题
在数字化浪潮席卷全球的今天,软件系统已成为国家关键领域的核心战斗力。不同于普通商业软件,这些承载着国家安全使命的软件系统面临着前所未有的质量挑战——如何在确保绝对安全的前提下,实现高效测试与快速迭代?这一命题正考验着…...

短视频矩阵系统文案创作功能开发实践,定制化开发
在短视频行业迅猛发展的当下,企业和个人创作者为了扩大影响力、提升传播效果,纷纷采用短视频矩阵运营策略,同时管理多个平台、多个账号的内容发布。然而,频繁的文案创作需求让运营者疲于应对,如何高效产出高质量文案成…...