当前位置: 首页 > news >正文

【力扣】191.位 1 的个数、485.最大连续 1 的个数

191.位 1 的个数

题目描述

编写一个函数,输入是一个无符号整数(以二进制串的形式),返回其二进制表达式中 设置位 的个数(也被称为汉明重量)。

示例 1:

输入:n = 11
输出:3
解释:输入的二进制串 1011 中,共有 3 个设置位。

示例 2:

输入:n = 128
输出:1
解释:输入的二进制串 10000000 中,共有 1 个设置位。

示例 3:

输入:n = 2147483645
输出:30
解释:输入的二进制串 11111111111111111111111111111101 中,共有 30 个设置位。

提示:

  • 1 <= n <= 231 - 1

进阶:

  • 如果多次调用这个函数,你将如何优化你的算法?

解题方法

  • C 循环检查
int hammingWeight(int n) {int cnt = 0;unsigned int m = 0x1; // 必须定义为“无符号”型for (int i = 0; i < 32; i++) {if (n & (m << i)) {cnt++;}}return cnt;
}

复杂度分析:
时间复杂度为 O(k),其中 k 是 int 型的二进制位数,k = 32。
空间复杂度为 O(1)。


485. 最大连续 1 的个数

题目描述

给定一个二进制数组 nums , 计算其中最大连续 1 的个数。

示例 1:

输入:nums = [1,1,0,1,1,1]
输出:3
解释:开头的两位和最后的三位都是连续 1 ,所以最大连续 1 的个数是 3.

示例 2:

输入:nums = [1,0,1,1,0,1]
输出:2

提示:

  • 1 <= nums.length <= 105
  • nums[i] 不是 0 就是 1.

解题方法

  • C 遍历取最大
// #define MAX(a, b) ((a) > (b) ? (a) : (b)) // 取最大值int my_max(int a, int b) {if (a > b)return a;elsereturn b;
}int findMaxConsecutiveOnes(int* nums, int numsSize) {int max_cnt = 0, cnt = 0; // 定义最大计数变量,计数变量for (int i = 0; i < numsSize; i++) {if (nums[i] == 1) {cnt++; // 对 1 计数} else {max_cnt = my_max(max_cnt, cnt); // 存储最大 1 的个数cnt = 0;                        // 重新计数}}max_cnt = my_max(max_cnt, cnt);return max_cnt;
}

复杂度分析
时间复杂度为 O(n),其中 n 是数组的长度。
空间复杂度为 O(1)。

相关文章:

【力扣】191.位 1 的个数、485.最大连续 1 的个数

191.位 1 的个数 题目描述 编写一个函数&#xff0c;输入是一个无符号整数&#xff08;以二进制串的形式&#xff09;&#xff0c;返回其二进制表达式中 设置位 的个数&#xff08;也被称为汉明重量&#xff09;。 示例 1&#xff1a; 输入&#xff1a;n 11 输出&#xff1…...

蓝桥杯 java 承压计算

题目: 思路&#xff1a; 1&#xff1a;其中的数字代表金属块的重量(计量单位较大) 说明每个数字后面不一定有多少个0 2&#xff1a;假设每块原料的重量都十分精确地平均落在下方的两个金属块上&#xff0c;最后&#xff0c;所有的金属块的重量都严格精确地平分落在最底层的电子…...

leetcode268-Missing Number

这道题目要求缺失的数字&#xff0c;一般解决数组的问题&#xff0c;要么往排序数组&#xff0c;要么往双指针遍历这些方向上靠&#xff0c;要么往异或方向上靠&#xff0c;总之落点无非就只有这几个。我们要求缺失的数字&#xff0c;可以依次让1&#xff5e;n和数组元素进行异…...

【jenkins+cmake+svn管理c++项目】jenkins回传文件到svn(windows)

书接上文&#xff1a;创建一个项目 在经过cmakemsbuild顺利生成动态库之后&#xff0c;考虑到我一个项目可能会生成多个动态库&#xff0c;它们分散在build内的不同文件夹&#xff0c;我希望能将它们收拢到一个文件夹下&#xff0c;并将其回传到svn。 一、动态库移位—cmake实…...

数据结构·二叉树(2)

目录 1 堆的概念 2 堆的实现 2.1 堆的初始化和销毁 2.2 获取堆顶数据和堆的判空 2.3 堆的向上调整算法 2.4 堆的向下调整算法 2.4 堆的插入 2.5 删除堆顶数据 2.6 建堆 3 建堆的时间复杂度 3.1 向上建堆的时间复杂度 3.2向下建堆的时间复杂度 4 堆的排序 前言&…...

MATLAB算法实战应用案例精讲-【毕业季论文专用】人工智能视觉检测技术及其在实际应用中的挑战与前景

目录 摘要: 第一章:引言 1.1 研究背景 1.2 研究目的与意义...

Linux虚拟机环境搭建spark

Linux环境搭建Spark分为两个版本&#xff0c;分别是Scala版本和Python版本。 一、 安装Pyspark 本环境以 Python 环境为例。 1、下载spark 下载网址&#xff1a;https://archive.apache.org/dist/spark 下载安装包&#xff1a;根据自己环境选择合适版本&#xff0c;本环境…...

STL的string容器

string基本概念 string是C风格的字符串&#xff0c;本质上是一个类。 string 和 char* 的区别 char* 是一个指针&#xff1b; string是一个类&#xff0c;内部封装了 char* &#xff0c;用来管理字符串&#xff0c;是一个 char* 型的容器。 特点 string内部封装了很多成员…...

半导体工艺技术

完整内容点击&#xff1a;【半导体工艺技术】...

acwing算法提高之图论--单源最短路的扩展应用

目录 1 介绍2 训练 1 介绍 本专题用来记录使用。。。。 2 训练 题目1&#xff1a;1137选择最佳线路 C代码如下&#xff0c; #include <iostream> #include <cstring> #include <algorithm> #include <queue>using namespace std;const int N 101…...

SQLServer数据库使用Function实现根据字段内容的拼音首字母进行数据查询

实现SQL首字母查询分两步&#xff0c;第一步建Function&#xff0c;第二步引用新建的Function。 1. 首先需要自定义一个查询的Function&#xff0c;详细SQL如下&#xff1a; ALTER function [dbo].[GetDataByPY](str nvarchar(4000)) returns nvarchar(4000) as begin decla…...

Linux——信号概念与信号产生方式

目录 一、概念 二、前台进程与后台进程 1.ctrlc 2.ctrlz 三、信号的产生方式 1.键盘输入产生信号 2.系统调用发送信号 2.1 kill()函数 2.2 raise()函数 2.3 abort()函数 3.异常导致信号产生 3.1 除0异常 3.2 段错误异常 4.软件条件产生信号 4.1 管道 4.2 闹钟…...

赋值语句还能当判断条件?涨芝士了!

赋值和条件看似是C语言中毫不相关的两个概念&#xff0c;虽然实际过程中我猜测不会有太多这种不太符合常理的情况出现&#xff0c;但是现在在学习的过程中&#xff0c;为了出题而出题总是会整出一些花活出来.....这很难不让人联想起高中时一些大佬为了彰显自己的数学天赋而自己…...

数据结构 - 算法效率|时间复杂度|空间复杂度

目录 1.算法效率 2.时间复杂度 2.1定义 2.2大O渐近表示法 2.3常见时间复杂度计算举例 3.空间复杂度 3.1定义 3.2常见空间复杂度计算举例 1.算法效率 算法的效率常用算法复杂度来衡量&#xff0c;算法复杂度描述了算法在输入数据规模变化时&#xff0c;其运行时间和空间…...

接口自动化之 + Jenkins + Allure报告生成 + 企微消息通知推送

接口自动化之 Jenkins Allure报告生成 企微消息通知推送 在jenkins上部署好项目&#xff0c;构建成功后&#xff0c;希望可以把生成的报告&#xff0c;以及结果统计发送至企微。 效果图&#xff1a; 实现如下。 1、生成allure报告 a. 首先在Jenkins插件管理中&#x…...

『Apisix安全篇』探索Apache APISIX身份认证插件:从基础到实战

&#x1f680;『Apisix系列文章』探索新一代微服务体系下的API管理新范式与最佳实践 【点击此跳转】 &#x1f4e3;读完这篇文章里你能收获到 &#x1f6e0;️ 了解APISIX身份认证的重要性和基本概念&#xff0c;以及如何在微服务架构中实施API安全。&#x1f511; 学习如何使…...

【01-20】计算机网络基础知识(非常详细)从零基础入门到精通,看完这一篇就够了

【01-20】计算机网络基础知识&#xff08;非常详细&#xff09;从零基础入门到精通&#xff0c;看完这一篇就够了 以下是本文参考的资料 欢迎大家查收原版 本版本仅作个人笔记使用1、OSI 的七层模型分别是&#xff1f;各自的功能是什么&#xff1f;2、说一下一次完整的HTTP请求…...

『大模型笔记』常见的分布式并行策略(分布式训练)

常见的分布式并行策略(分布式训练) 文章目录 一. 为什么分布式训练越来越流行二. 常见的并行策略2.1 数据并行2.2 模型并行2.3 流水并行2.4 混合并行二. 参考文献一. 为什么分布式训练越来越流行 近年来,深度学习被广泛应用到各个领域,包括计算机视觉、语言理解、语音识别、广…...

java 企业工程管理系统软件源码+Spring Cloud + Spring Boot +二次开发+ 可定制化

工程项目管理软件是现代项目管理中不可或缺的工具&#xff0c;它能够帮助项目团队更高效地组织和协调工作。本文将介绍一款功能强大的工程项目管理软件&#xff0c;该软件采用先进的Vue、Uniapp、Layui等技术框架&#xff0c;涵盖了项目策划决策、规划设计、施工建设到竣工交付…...

3D数据格式导出工具HOOPS Publish如何生成高质量3D PDF?

在当今数字化时代&#xff0c;从建筑设计到制造业&#xff0c;从医学领域到电子游戏开发&#xff0c;3D技术已经成为了不可或缺的一部分。在这个进程中&#xff0c;将3D模型导出为3D PDF格式具有重要的意义。同时&#xff0c;HOOPS Publish作为一个领先的解决方案&#xff0c;为…...

利用最小二乘法找圆心和半径

#include <iostream> #include <vector> #include <cmath> #include <Eigen/Dense> // 需安装Eigen库用于矩阵运算 // 定义点结构 struct Point { double x, y; Point(double x_, double y_) : x(x_), y(y_) {} }; // 最小二乘法求圆心和半径 …...

eNSP-Cloud(实现本地电脑与eNSP内设备之间通信)

说明&#xff1a; 想象一下&#xff0c;你正在用eNSP搭建一个虚拟的网络世界&#xff0c;里面有虚拟的路由器、交换机、电脑&#xff08;PC&#xff09;等等。这些设备都在你的电脑里面“运行”&#xff0c;它们之间可以互相通信&#xff0c;就像一个封闭的小王国。 但是&#…...

深入浅出Asp.Net Core MVC应用开发系列-AspNetCore中的日志记录

ASP.NET Core 是一个跨平台的开源框架&#xff0c;用于在 Windows、macOS 或 Linux 上生成基于云的新式 Web 应用。 ASP.NET Core 中的日志记录 .NET 通过 ILogger API 支持高性能结构化日志记录&#xff0c;以帮助监视应用程序行为和诊断问题。 可以通过配置不同的记录提供程…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合

强化学习&#xff08;Reinforcement Learning, RL&#xff09;是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程&#xff0c;然后使用强化学习的Actor-Critic机制&#xff08;中文译作“知行互动”机制&#xff09;&#xff0c;逐步迭代求解…...

聊聊 Pulsar:Producer 源码解析

一、前言 Apache Pulsar 是一个企业级的开源分布式消息传递平台&#xff0c;以其高性能、可扩展性和存储计算分离架构在消息队列和流处理领域独树一帜。在 Pulsar 的核心架构中&#xff0c;Producer&#xff08;生产者&#xff09; 是连接客户端应用与消息队列的第一步。生产者…...

大语言模型如何处理长文本?常用文本分割技术详解

为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...

【HTML-16】深入理解HTML中的块元素与行内元素

HTML元素根据其显示特性可以分为两大类&#xff1a;块元素(Block-level Elements)和行内元素(Inline Elements)。理解这两者的区别对于构建良好的网页布局至关重要。本文将全面解析这两种元素的特性、区别以及实际应用场景。 1. 块元素(Block-level Elements) 1.1 基本特性 …...

Android15默认授权浮窗权限

我们经常有那种需求&#xff0c;客户需要定制的apk集成在ROM中&#xff0c;并且默认授予其【显示在其他应用的上层】权限&#xff0c;也就是我们常说的浮窗权限&#xff0c;那么我们就可以通过以下方法在wms、ams等系统服务的systemReady()方法中调用即可实现预置应用默认授权浮…...

select、poll、epoll 与 Reactor 模式

在高并发网络编程领域&#xff0c;高效处理大量连接和 I/O 事件是系统性能的关键。select、poll、epoll 作为 I/O 多路复用技术的代表&#xff0c;以及基于它们实现的 Reactor 模式&#xff0c;为开发者提供了强大的工具。本文将深入探讨这些技术的底层原理、优缺点。​ 一、I…...

第 86 场周赛:矩阵中的幻方、钥匙和房间、将数组拆分成斐波那契序列、猜猜这个单词

Q1、[中等] 矩阵中的幻方 1、题目描述 3 x 3 的幻方是一个填充有 从 1 到 9 的不同数字的 3 x 3 矩阵&#xff0c;其中每行&#xff0c;每列以及两条对角线上的各数之和都相等。 给定一个由整数组成的row x col 的 grid&#xff0c;其中有多少个 3 3 的 “幻方” 子矩阵&am…...