当前位置: 首页 > news >正文

内存可见性

内存可见性

  • 一:内存可见性
    • 1.2:
  • 二:解决内存可见性问题
    • 2.1 volatile关键字
    • 2.2:synchronized关键字解决内存可见性问题

一:内存可见性

public class Demo1 {public static int count = 0;public static void main(String[] args) throws InterruptedException {Thread t1=new Thread(()->{while(count==0){}System.out.println("t1线程结束");});Thread t2=new Thread(()->{Scanner scanner=new Scanner(System.in);1System.out.println("请输入一个整数:");count=scanner.nextInt();});t1.start();t2.start();}
}

上述代码预期效果:
t1线程首先进入循环,当用户输入一个非0整数的时候,就会使t1线程退出循环.结束线程.
但t1实际上并没有真正出现退出的情况,这也是"bug",而产生上述现象的原因,就是**“内存可见性”**

  while(count==0){}

从指令角度分析这段代码:
(1)load :从内存读取数据到CPU 寄存器中,
(2)cmp:比较,条件成立,继续循环,条件不成立,退出循环.
然而,一个load指令消耗的时间,会比一个cmp指令消耗的时间多得多,执行一次load的时间,等于上万次cmp执行消耗的时间.
同时,JVM发现每次load执行的结果,是一样的(t2线程修改之前),因此,**JVM就把上述load操作优化掉了,只是第一次真正进行load,后续再执行到load,而是直接读取已经load过的寄存器中的值了(读取寄存器的速度远远大于 读取内存的速度).**当t2线程修改count的值,但由于t1线程并没有从内存中重新读取,所以获取不到更新后的值.

1.2:

public class Demo1 {public static int count = 0;public static void main(String[] args) throws InterruptedException {Thread t1=new Thread(()->{while(count==0){System.out.println("hello ");}System.out.println("t1线程结束");});Thread t2=new Thread(()->{Scanner scanner=new Scanner(System.in);System.out.println("请输入一个整数:");count=scanner.nextInt();});t1.start();t2.start();}
}

当我们在

 while(count==0){System.out.println("hello ");}

while循环中打印,就会发现代码又和我们预期的效果一样了,这又是为什么???
因为循环体内存在IO操作,而IO操作是从硬盘中获取数据,因此IO操作消耗的时间比load操作消耗的时间更多,并且IO操作是不能被优化掉的.
总结:上述问题本质上是编译器优化引起的(优化是由javac和java配合完成的工作),优化掉load操作之后,使t2线程的修改,没有被t1线程感知到,这就造成了"内存可见性"问题

二:解决内存可见性问题

2.1 volatile关键字

编译器什么时候优化,什么时候不优化,这是一个"玄学问题".
通过volatile关键字,解决优化问题,让编译器不再优化.
当给变量修饰上volatile关键字之后,编译器就知道了,这个变量是"反复无常"的,编译器就不会再进行优化了
volatile 是专门针对内存可见性的场景来解决问题的,告诉编译器不要进行优化操作.

public class Demo1 {public  volatile static int count = 0;public static void main(String[] args) throws InterruptedException {Thread t1=new Thread(()->{while(count==0){}System.out.println("t1线程结束");});Thread t2=new Thread(()->{Scanner scanner=new Scanner(System.in);System.out.println("请输入一个整数:");count=scanner.nextInt();});t1.start();t2.start();}
}

2.2:synchronized关键字解决内存可见性问题

synchronized关键字,和volatile关键字处理逻辑上是不同的.
引入synchronized关键字,是因为加锁操作本身太重量了,相比load 来说,开销更大,编译器自然就不会对load 优化了(和sleep ,IO操作原理类似).

public class Demo1 {public   static int count = 0;public static void main(String[] args) throws InterruptedException {Object locker = new Object();Thread t1=new Thread(()->{while(count==0){synchronized (locker){{}}}System.out.println("t1线程结束");});Thread t2=new Thread(()->{Scanner scanner=new Scanner(System.in);System.out.println("请输入一个整数:");count=scanner.nextInt();});t1.start();t2.start();}
}

相关文章:

内存可见性

内存可见性 一:内存可见性1.2: 二:解决内存可见性问题2.1 volatile关键字2.2:synchronized关键字解决内存可见性问题 一:内存可见性 public class Demo1 {public static int count 0;public static void main(String[] args) throws InterruptedException {Thread t1new Thre…...

Android room 在dao中不能使用挂起suspend 否则会报错

错误&#xff1a; Type of the parameter must be a class annotated with Entity or a collection/array of it. kotlin.coroutines.Continuation<? super kotlin.Unit> $completion); 首先大家检查一下几个点 一、kotlin-kapt 二、 是否引入了 room-ktx 我是2024年…...

【stable diffusion扩散模型】一篇文章讲透

目录 一、引言 二、Stable Diffusion的基本原理 1 扩散模型 2 Stable Diffusion模型架构 3 训练过程与算法细节 三、Stable Diffusion的应用领域 1 图像生成与艺术创作 2 图像补全与修复 3 其他领域 四、Stable Diffusion的优势与挑战 &#x1f449;优势 &#x1f…...

数据链路层之信道:数字通信的桥梁与守护者

✨✨ 欢迎大家来访Srlua的博文&#xff08;づ&#xffe3;3&#xffe3;&#xff09;づ╭❤&#xff5e;✨✨ &#x1f31f;&#x1f31f; 欢迎各位亲爱的读者&#xff0c;感谢你们抽出宝贵的时间来阅读我的文章。 我是Srlua小谢&#xff0c;在这里我会分享我的知识和经验。&am…...

SQL109 纠错4(组合查询,order by..)

SELECT cust_name, cust_contact, cust_email FROM Customers WHERE cust_state MI UNION SELECT cust_name, cust_contact, cust_email FROM Customers WHERE cust_state IL ORDER BY cust_name;order by子句&#xff0c;必须位于最后一条select语句之后...

Spring Boot + Vue 实现文件导入导出功能

文章目录 1、概述2、后端实现&#xff08;Spring Boot&#xff09;3、前端实现&#xff08;Vue&#xff09;4、总结 1、概述 ​ 在现代Web应用开发中&#xff0c;文件的导入导出是一个常见的需求。Spring Boot作为后端开发的强大框架&#xff0c;搭配前端框架Vue&#xff0c;可…...

vue watch 深度监听

vue2文档&#xff1a;API — Vue.js vue3文档&#xff1a;侦听器 | Vue.js watch 可以用来监听页面中的数据&#xff0c;但如果监听的源是对象或数组&#xff0c;则使用深度监听&#xff0c;强制深度遍历源&#xff0c;以便在深度变更时触发回调。 一&#xff0c;监听 <t…...

Qt源码调试步骤记录

1.源码&#xff1a; 两种方式&#xff0c;要么安装qt时选择source&#xff0c;要么从官网下载源码&#xff0c;然后在qt creator中设置路径。二选一即可。我选的第二种。 1.1.第一种&#xff0c;安装时选择source&#xff1a; 1.2.第二种&#xff0c;下载源码设置路径&#x…...

大数据面试英文自我介绍参考(万字长文)

发现有一个怪圈,如果码农年龄35+,除非非常匹配,不然在国内企业筛选可能就筛选不过。国外码农可以干到40+、50+。一些外企,对年龄35+的码农依然青睐。这些外企对英文是有要求,通常是要英文自我介绍,下面提供一些英文自我介绍参考。 参考1: Good morning/afternoon, I a…...

外包干了5天,技术退步明显.......

先说一下自己的情况&#xff0c;大专生&#xff0c;18年通过校招进入杭州某软件公司&#xff0c;干了接近4年的功能测试&#xff0c;今年年初&#xff0c;感觉自己不能够在这样下去了&#xff0c;长时间呆在一个舒适的环境会让一个人堕落! 而我已经在一个企业干了四年的功能测…...

Docket常见的软件部署1

1 安装MySQL # 查看MySQL镜像 docker search mysql # 拉起镜像 docker pull mysql:5.7 # 创建MySQL数据映射卷&#xff0c;防止数据不丢失 mkdir -p /hmoe/tem/docker/mysql/data/ # 启动镜像 docker run -d --name mysql -e MYSQL_ROOT_PASSWORD123456 -p 3306:3306 -v /home…...

Qt源程序编译及错误问题解决

Error 5 while parsing C:/qt-everywhere-src-6.6.2/qt-build/qtdeclarative/src/qmlmodels/meta_types/qt6qmlmodels_release_metatypes.json: illegal value .json 文件为空文件0字节&#xff0c;加 “[]”&#xff0c;不要引号。可以解决这类错误。 Qt编译 Qt for Windows…...

作业练习(python)

第一题&#xff1a; cel eval(input()) fah 9 / 5 * cel 32 print("%.1f" % fah) 第二题&#xff1a; radius, length eval(input()) area radius * radius * 3.14159267 volume area * length print("%.2f" % area) print("%.2f" …...

Wireshark使用相关

1.wireshark如何查看RST包 tcp.flags.reset1 RST表示复位&#xff0c;用来异常的关闭连接&#xff0c;在TCP的设计中它是不可或缺的。发送RST包关闭连接时&#xff0c;不必等缓冲区的包都发出去&#xff08;不像上面的FIN包&#xff09;&#xff0c;直接就丢弃缓存区的包发送R…...

相机标定学习记录

相机标定是计算机视觉和机器视觉领域中的一项基本技术&#xff0c;它的主要目的是通过获取相机的内部参数&#xff08;内参&#xff09;和外部参数&#xff08;外参&#xff09;&#xff0c;以及镜头畸变参数&#xff0c;建立起现实世界中的点与相机成像平面上对应像素点之间准…...

CSS 滚动条样式修改

1、滚动条整体部分 使用 ::-webkit-scrollbar 注意&#xff1a;这个必须要加&#xff0c;不然修改的样式不生效 ::-webkit-scrollbar {width: 10px;//修改滚动条宽度 }2、滚动条中的滑块 使用 ::-webkit-scrollbar-thumb ::-webkit-scrollbar-thumb {border-radius: 8px;b…...

谈谈配置中心?

配置中心可以做集中式的服务配置管理&#xff0c;比如配置一些数据库连接的URL&#xff0c;一些共用的配置且可动态调整的参数。如果不采用集中式的管理&#xff0c;会导致修改起来特别麻烦&#xff0c;一个个的修改特别繁琐。 Nacos Config配置中心中采用的是客户端拉取数据&a…...

人工智能(pytorch)搭建模型25-基于pytorch搭建FPN特征金字塔网络的应用场景,模型结构介绍

大家好&#xff0c;我是微学AI&#xff0c;今天给大家介绍一下人工智能(pytorch)搭建模型25-基于pytorch搭建FPN特征金字塔网络的应用场景&#xff0c;模型结构介绍。特征金字塔网络&#xff08;FPN&#xff09;是一种深度学习模型结构&#xff0c;主要应用于目标检测任务中&am…...

JRT业务开发起步

这是一段充满挑战与奋斗的旅程&#xff0c;自第一行Java代码的写下起&#xff0c;便历经重重险阻。从细微的代码行&#xff0c;逐步汇聚成实用的工具类方法&#xff1b;从工具类方法的积累&#xff0c;逐渐构建起功能强大的工具包&#xff1b;再从工具包的整合&#xff0c;最终…...

深度解析:国内主流音视频产品的核心功能与市场表现

前言 当前音视频开发领域呈现出多样化竞争态势&#xff0c;其中声网&#xff08;Agora&#xff09;、即构&#xff08;ZEGO&#xff09;等云通讯企业占据了市场的主导地位。随着技术的持续进步和用户需求的日益多样化&#xff0c;选择音视频服务提供商的标准也越来越个性化&am…...

OpenLayers 分屏对比(地图联动)

注&#xff1a;当前使用的是 ol 5.3.0 版本&#xff0c;天地图使用的key请到天地图官网申请&#xff0c;并替换为自己的key 地图分屏对比在WebGIS开发中是很常见的功能&#xff0c;和卷帘图层不一样的是&#xff0c;分屏对比是在各个地图中添加相同或者不同的图层进行对比查看。…...

精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南

精益数据分析&#xff08;97/126&#xff09;&#xff1a;邮件营销与用户参与度的关键指标优化指南 在数字化营销时代&#xff0c;邮件列表效度、用户参与度和网站性能等指标往往决定着创业公司的增长成败。今天&#xff0c;我们将深入解析邮件打开率、网站可用性、页面参与时…...

AGain DB和倍数增益的关系

我在设置一款索尼CMOS芯片时&#xff0c;Again增益0db变化为6DB&#xff0c;画面的变化只有2倍DN的增益&#xff0c;比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析&#xff1a; 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...

[免费]微信小程序问卷调查系统(SpringBoot后端+Vue管理端)【论文+源码+SQL脚本】

大家好&#xff0c;我是java1234_小锋老师&#xff0c;看到一个不错的微信小程序问卷调查系统(SpringBoot后端Vue管理端)【论文源码SQL脚本】&#xff0c;分享下哈。 项目视频演示 【免费】微信小程序问卷调查系统(SpringBoot后端Vue管理端) Java毕业设计_哔哩哔哩_bilibili 项…...

windows系统MySQL安装文档

概览&#xff1a;本文讨论了MySQL的安装、使用过程中涉及的解压、配置、初始化、注册服务、启动、修改密码、登录、退出以及卸载等相关内容&#xff0c;为学习者提供全面的操作指导。关键要点包括&#xff1a; 解压 &#xff1a;下载完成后解压压缩包&#xff0c;得到MySQL 8.…...

libfmt: 现代C++的格式化工具库介绍与酷炫功能

libfmt: 现代C的格式化工具库介绍与酷炫功能 libfmt 是一个开源的C格式化库&#xff0c;提供了高效、安全的文本格式化功能&#xff0c;是C20中引入的std::format的基础实现。它比传统的printf和iostream更安全、更灵活、性能更好。 基本介绍 主要特点 类型安全&#xff1a…...

MySQL的pymysql操作

本章是MySQL的最后一章&#xff0c;MySQL到此完结&#xff0c;下一站Hadoop&#xff01;&#xff01;&#xff01; 这章很简单&#xff0c;完整代码在最后&#xff0c;详细讲解之前python课程里面也有&#xff0c;感兴趣的可以往前找一下 一、查询操作 我们需要打开pycharm …...

数据库——redis

一、Redis 介绍 1. 概述 Redis&#xff08;Remote Dictionary Server&#xff09;是一个开源的、高性能的内存键值数据库系统&#xff0c;具有以下核心特点&#xff1a; 内存存储架构&#xff1a;数据主要存储在内存中&#xff0c;提供微秒级的读写响应 多数据结构支持&…...

在Zenodo下载文件 用到googlecolab googledrive

方法&#xff1a;Figshare/Zenodo上的数据/文件下载不下来&#xff1f;尝试利用Google Colab &#xff1a;https://zhuanlan.zhihu.com/p/1898503078782674027 参考&#xff1a; 通过Colab&谷歌云下载Figshare数据&#xff0c;超级实用&#xff01;&#xff01;&#xff0…...

CMS内容管理系统的设计与实现:多站点模式的实现

在一套内容管理系统中&#xff0c;其实有很多站点&#xff0c;比如企业门户网站&#xff0c;产品手册&#xff0c;知识帮助手册等&#xff0c;因此会需要多个站点&#xff0c;甚至PC、mobile、ipad各有一个站点。 每个站点关联的有站点所在目录及所属的域名。 一、站点表设计…...