当前位置: 首页 > news >正文

KaTex 常用公式编辑

原文:https://blog.iyatt.com/?p=7854

注:语法上和 Latex 差不多一样,我是因为 WordPress 上使用 WP Githuber MD 插件,才用的 KaTex(插件里面的 LaTex 模块有 bug,无法渲染)

希腊字母

大写代码小写代码
AAα\alpha
BBβ\beta
Γ\Gammaγ\gamma
Δ\Deltaδ\delta
EEϵ\epsilon
ZZζ\zeta
HHη\eta
Θ\Thetaθ\theta
IIι\iota
KKκ\kappa
Λ\Lambdaλ\lambda
MMμ\mu
NNν\nu
Ξ\Xiξ\xi
OOο\omicron
Π\Piπ\pi
PPρ\rho
Σ\Sigmaσ\sigma
TTτ\tau
ΥΥυ\upsilon
Φ\Phiϕ\phi
XXχ\chi
Ψ\Psiψ\psi
Ω\Omegaω\omega

符号

乘 \times × \times ×
除 \div ÷ \div ÷
加减 \pm ± \pm ±
减加 \mp ∓ \mp
偏导数 \partial ∂ \partial
小于 \lt < \lt <
大于 \gt > \gt >
小于等于 \le ≤ \le
大于等于 \ge ≥ \ge
不等于 \ne ≠ \ne =
加 \not 否定,如 \not \lt ≮ \not \lt <
并集 \cup ∪ \cup
交集 \cap ∩ \cap
子集 subset ⊂ \subset ,subseteq ⊊ \subsetneq
差集 \setminus ∖ \setminus
非子集 \subsetneq ⊊ \subsetneq
父集 \supset ⊃ \supset
属于 \in ∈ \in
不属于 \notin ∉ \notin /
空集 \emptyset ∅ \emptyset
空 \varnothing ∅ \varnothing
虚数 i、j \imath ı \imath , \jmath ȷ \jmath
异或 \oplus ⊕ \oplus
同与 \otimes ⊗ \otimes
同或 \odot ⊙ \odot
与 \land ∧ \land
或 \lor ∨ \lor
非 \lnot ¬ \lnot ¬
点乘 \cdot ⋅ \cdot
平均运算符 \overline{x} x ‾ \overline{x} x
向量(单)\vec{x} x ⃗ \vec{x} x
向量(多)\overrightarrow{xy} x y → \overrightarrow{xy} xy
梯度算子 \nabla ∇ \nabla
空格 \ ,比如 a\ b a b a\ b a b
任意 \forall ∀ \forall
存在 \exists ∃ \exists
反斜杠 \backslash \ \backslash \

\to → \to
\rightarrow → \rightarrow
\leftarrow ← \leftarrow
\leftrightarrow ↔ \leftrightarrow
\uparrow ↑ \uparrow
\downarrow ↓ \downarrow
\updownarrow ↕ \updownarrow
\Rightarrow ⇒ \Rightarrow
\Leftarrow ⇐ \Leftarrow
\Leftrightarrow ⇔ \Leftrightarrow
\Uparrow ⇑ \Uparrow
\Downarrow ⇓ \Downarrow
\Updownarrow ⇕ \Updownarrow
长箭头,前面加 long 或 Long,比如 \longrightarrow ⟶ \longrightarrow ,\Longrightarrow ⟹ \Longrightarrow

\twoheadrightarrow ↠ \twoheadrightarrow
\rightarrowtail ↣ \rightarrowtail
\looparrowright ↬ \looparrowright
\curvearrowright ↷ \curvearrowright
\circlearrowright ↻ \circlearrowright
\Rsh ↱ \Rsh
\multimap ⊸ \multimap
\leftrightsquigarrow ↭ \leftrightsquigarrow
\rightsquigarrow ⇝ \rightsquigarrow
\leadsto ⇝ \leadsto
\nearrow ↗ \nearrow
\searrow ↘ \searrow
\swarrow ↙ \swarrow
\nwarrow ↖ \nwarrow
\nleftarrow ↚ \nleftarrow
\nrightarrow ↛ \nrightarrow
\nLeftarrow ⇍ \nLeftarrow
\nRightarrow ⇏ \nRightarrow
\nleftrightarrow ↮ \nleftrightarrow
\nLeftrightarrow ⇎ \nLeftrightarrow
\dashrightarrow ⇢ \dashrightarrow
\dashleftarrow ⇠ \dashleftarrow
\leftleftarrows ⇇ \leftleftarrows
\leftrightarrows ⇆ \leftrightarrows
\twoheadleftarrow ↞ \twoheadleftarrow
\leftarrowtail ↢ \leftarrowtail
\looparrowleft ↫ \looparrowleft
\curvearrowleft ↶ \curvearrowleft
\circlearrowleft ↺ \circlearrowleft
\Lsh ↰ \Lsh
\mapsto ↦ \mapsto
\hookleftarrow ↩ \hookleftarrow
\hookrightarrow ↪ \hookrightarrow
\upharpoonright ↾ \upharpoonright
\upharpoonleft ↿ \upharpoonleft
\downharpoonright ⇂ \downharpoonright
\downharpoonleft ⇃ \downharpoonleft
\leftharpoonup ↼ \leftharpoonup
\rightharpoonup ⇀ \rightharpoonup
\leftharpoondown ↽ \leftharpoondown
\rightharpoondown ⇁ \rightharpoondown
\upuparrows ⇈ \upuparrows
\downdownarrows ⇊ \downdownarrows
\rightrightarrows ⇉ \rightrightarrows
\rightleftarrows ⇄ \rightleftarrows
\rightrightarrows ⇉ \rightrightarrows
\rightleftarrows ⇄ \rightleftarrows
\rightleftharpoons ⇌ \rightleftharpoons
\leftrightharpoons ⇋ \leftrightharpoons

\mapsto ↦ \mapsto
\forall ∀ \forall
\exists ∃ \exists
\top ⊤ \top
\bot ⊥ \bot
\vDash ⊨ \vDash
\star ⋆ \star
\ast ∗ \ast
\bullet ∙ \bullet
约等于 \approx ≈ \approx
波浪号 \sim ∼ \sim
\equiv ≡ \equiv
\prec ≺ \prec
无穷 \infty ∞ \infty
\aleph_o ℵ o \aleph_o o
\aleph_o ℵ o \aleph_o o
\Im ℑ \Im
\Re ℜ \Re
\ldots … \ldots
\cdots ⋯ \cdots
\vdots ⋮ \vdots
\ddots ⋱ \ddots
\hat x x ^ \hat x x^
\widehat {xy} x y ^ \widehat {xy} xy
\dot x x ˙ \dot x x˙
\ddot x x ¨ \ddot x x¨
\dot {\dot x} x ˙ ˙ \dot {\dot x} x˙˙
\mathring{U} U ˚ \mathring{U} U˚

##上下添加公式

\overset{x=9}{=}
= x = 9 \overset{x=9}{=} =x=9

\underset{x=\sin\theta}{=}
= x = sin ⁡ θ \underset{x=\sin\theta}{=} x=sinθ=

\xlongequal[下方公式]{上方公式}
= 下方公式 上方公式 \xlongequal[下方公式]{上方公式} 上方公式 下方公式

上下大括号

\overbrace{a+b+c}^x a + b + c ⏞ x \overbrace{a+b+c}^x a+b+c x

a+\underbrace{b+c}_y a + b + c ⏟ y a+\underbrace{b+c}_y a+y b+c

上下标

A^m_n A n m A_n^m Anm
A_n^m A n m A_n^m Anm
x^2 x 2 x^2 x2
a_n a n a_n an
a_{n+1} a n + 1 a_{n+1} an+1
A{BC} A B C A^{B^C} ABC
{AB}C A B C {A^B}^C ABC

根号

\sqrt{25} 25 \sqrt{25} 25
\sqrt[3]{27} 27 3 \sqrt[3]{27} 327

分式

\frac{a+b}{a-b} a + b a − b \frac{a+b}{a-b} aba+b
\frac{4}{5} 4 5 \frac{4}{5} 54

括号

(), [] 直接使用,{ 和 } 有特殊含义,需要使用 { 和 } 表示。

尖括号使用
\langle ⟨ \langle
\rangle ⟩ \rangle

求和

\sum_{i=1}^n ∑ i = 1 n \sum_{i=1}^n i=1n
\sum_{j=0}^k ∑ j = 0 k \sum_{j=0}^k j=0k

连乘

\prod_{i=0}^nx ∏ i = 0 n \prod_{i=0}^n i=0n

积分

\int_0^x ∫ 0 x \int_0^x 0x
\iint_0^x ∬ 0 x \iint_0^x 0x
\iiint_0^x ∭ 0 x \iiint_0^x 0x

极限

\lim_{x \to \infty}(1 + \frac{1}{x})^x
lim ⁡ x → ∞ ( 1 + 1 x ) x \lim_{x \to \infty}(1 + \frac{1}{x})^x xlim(1+x1)x

换行等号对齐

\begin{aligned}
19&=10+9 \\
&=11+8 \\
&=12+7
\end{aligned}

19 = 10 + 9 = 11 + 8 = 12 + 7 \begin{aligned} 19&=10+9 \\ &=11+8 \\ &=12+7 \end{aligned} 19=10+9=11+8=12+7

分类

f(x)=
\begin{cases}
x+1, &x<0\\
0, &x=0\\
2x-1, &x>0
\end{cases}

f ( x ) = { x + 1 , x < 0 0 , x = 0 2 x − 1 , x > 0 f(x)= \begin{cases} x+1, &x<0\\ 0, &x=0\\ 2x-1, &x>0 \end{cases} f(x)= x+1,0,2x1,x<0x=0x>0

方程组

\left \{
\begin{array}{l} % l 靠左、c 居中、r 靠右
x+y+z=6 \\
2x-y+z=3 \\
x+y-z=0
\end{array}
\right.

{ x + y + z = 6 2 x − y + z = 3 x + y − z = 0 \left \{ \begin{array}{l} x+y+z=6 \\ 2x-y+z=3 \\ x+y-z=0 \end{array} \right. x+y+z=62xy+z=3x+yz=0

多列对齐

\begin{array}{l l} % l 靠左、c 居中、r 靠右
x+y+z=6 & x+y+z=6\\
2x-y+z=3 & 2x-y+z=3 \\
x+y-z=0 & x+y-z=0
\end{array}

x + y + z = 6 x + y + z = 6 2 x − y + z = 3 2 x − y + z = 3 x + y − z = 0 x + y − z = 0 \begin{array}{l l} % l 靠左、c 居中、r 靠右 x+y+z=6 & x+y+z=6\\ 2x-y+z=3 & 2x-y+z=3 \\ x+y-z=0 & x+y-z=0 \end{array} x+y+z=62xy+z=3x+yz=0x+y+z=62xy+z=3x+yz=0

矩阵

\begin{matrix}
1&2&3 \\
4&5&6 \\
7&8&9
\end{matrix}

1 2 3 4 5 6 7 8 9 \begin{matrix} 1&2&3 \\ 4&5&6 \\ 7&8&9 \end{matrix} 147258369

\left \{
\begin{matrix}
1&2&3 \\
4&5&6 \\
7&8&9
\end{matrix}
\right \}

{ 1 2 3 4 5 6 7 8 9 } \left \{ \begin{matrix} 1&2&3 \\ 4&5&6 \\ 7&8&9 \end{matrix} \right \} 147258369

\left |
\begin{matrix}
1&2&3 \\
4&5&6 \\
7&8&9
\end{matrix}
\right |

∣ 1 2 3 4 5 6 7 8 9 ∣ \left | \begin{matrix} 1&2&3 \\ 4&5&6 \\ 7&8&9 \end{matrix} \right | 147258369

\left (
\begin{matrix}
1&2&3 \\
4&5&6 \\
7&8&9
\end{matrix}
\right )

( 1 2 3 4 5 6 7 8 9 ) \left ( \begin{matrix} 1&2&3 \\ 4&5&6 \\ 7&8&9 \end{matrix} \right ) 147258369

上面是使用 \left 和 \right 来添加的左右括号,也可以不用这对符号,将 \begin 和 \end 后面的词分别换为 pmatrix、bmatrix、Bmatrix、vmatrix、Vmatrix,分别对应小括号、中括号、大括号、单竖线、双竖线,如:

\begin{pmatrix}
1&2&3 \\
4&5&6 \\
7&8&9
\end{pmatrix}

( 1 2 3 4 5 6 7 8 9 ) \begin{pmatrix} 1&2&3 \\ 4&5&6 \\ 7&8&9 \end{pmatrix} 147258369

\begin{array} {c c | c} % c 居中,r 右对齐,l 左对齐,竖线为插入竖线的位置
1&2&3 \\
\hline % 插入横线
4&5&6 \\
7&8&9
\end{array}

1 2 3 4 5 6 7 8 9 \begin{array} {c c | c} 1&2&3 \\ \hline 4&5&6 \\ 7&8&9 \end{array} 147258369

表格

\begin{array}{c|lcr}
n & \text{Left} & \text{Center} & \text{Right} \\
\hline
1 & 2 & 1 & 4 \\
4 & 3 & 2 & 1 \\
1.0 & 2.0 & 3000 & 3\times10^5 \\
\end{array}

n Left Center Right 1 2 1 4.0 4 3 2 1 1.0 2.0 3000 3 × 1 0 5 \begin{array}{c|lcr} n & \text{Left} & \text{Center} & \text{Right} \\ \hline 1 & 2 & 1 & 4.0 \\ 4 & 3 & 2 & 1 \\ 1.0 & 2.0 & 3000 & 3\times10^5 \\ \end{array} n141.0Left232.0Center123000Right4.013×105

\begin{array}{|c|c|}
\hline
\text{公式1} & \text{公式2} \\
\hline
\begin{aligned}
a &= b + c \\&= d + e
\end{aligned}
&
\begin{aligned}
f &= g + h \\&= i + j
\end{aligned} \\
\hline
\end{array}

公式1 公式2 a = b + c = d + e f = g + h = i + j \begin{array}{|c|c|} \hline \text{公式1} & \text{公式2} \\ \hline \begin{aligned} a &= b + c \\ &= d + e \end{aligned} & \begin{aligned} f &= g + h \\ &= i + j \end{aligned} \\ \hline \end{array} 公式1a=b+c=d+e公式2f=g+h=i+j

字体

黑板粗体

一般用于表示数学和物理学中的向量或集合

\mathbb{ABCDEFGHIJKLMNOPQRSTUVWXYZ} A B C D E F G H I J K L M N O P Q R S T U V W X Y Z \mathbb{ABCDEFGHIJKLMNOPQRSTUVWXYZ} ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathbb{abcdefghijklmnopqrstuvwxyz} a b c d e f g h i j k l m n o p q r s t u v w x y z \mathbb{abcdefghijklmnopqrstuvwxyz} abcdefghijklmnopqrstuvwxyz

正粗体

\mathbf{ABCDEFGHIJKLMNOPQRSTUVWXYZ} A B C D E F G H I J K L M N O P Q R S T U V W X Y Z \mathbf{ABCDEFGHIJKLMNOPQRSTUVWXYZ} ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathbf{abcdefghijklmnopqrstuvwxyz} a b c d e f g h i j k l m n o p q r s t u v w x y z \mathbf{abcdefghijklmnopqrstuvwxyz} abcdefghijklmnopqrstuvwxyz

罗马体

\mathrm{ABCDEFGHIJKLMNOPQRSTUVWXYZ} A B C D E F G H I J K L M N O P Q R S T U V W X Y Z \mathrm{ABCDEFGHIJKLMNOPQRSTUVWXYZ} ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathrm{abcdefghijklmnopqrstuvwxyz} a b c d e f g h i j k l m n o p q r s t u v w x y z \mathrm{abcdefghijklmnopqrstuvwxyz} abcdefghijklmnopqrstuvwxyz

哥特体

\mathfrak{ABCDEFGHIJKLMNOPQRSTUVWXYZ} A B C D E F G H I J K L M N O P Q R S T U V W X Y Z \mathfrak{ABCDEFGHIJKLMNOPQRSTUVWXYZ} ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathfrak{abcdefghijklmnopqrstuvwxyz} a b c d e f g h i j k l m n o p q r s t u v w x y z \mathfrak{abcdefghijklmnopqrstuvwxyz} abcdefghijklmnopqrstuvwxyz

打印体

\mathtt{ABCDEFGHIJKLMNOPQRSTUVWXYZ} A B C D E F G H I J K L M N O P Q R S T U V W X Y Z \mathtt{ABCDEFGHIJKLMNOPQRSTUVWXYZ} ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathtt{abcdefghijklmnopqrstuvwxyz} a b c d e f g h i j k l m n o p q r s t u v w x y z \mathtt{abcdefghijklmnopqrstuvwxyz} abcdefghijklmnopqrstuvwxyz

手写体

\mathcal{ABCDEFGHIJKLMNOPQRSTUVWXYZ} A B C D E F G H I J K L M N O P Q R S T U V W X Y Z \mathcal{ABCDEFGHIJKLMNOPQRSTUVWXYZ} ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathcal{abcdefghijklmnopqrstuvwxyz} a b c d e f g h i j k l m n o p q r s t u v w x y z \mathcal{abcdefghijklmnopqrstuvwxyz} abcdefghijklmnopqrstuvwxyz

相关文章:

KaTex 常用公式编辑

原文&#xff1a;https://blog.iyatt.com/?p7854 注&#xff1a;语法上和 Latex 差不多一样&#xff0c;我是因为 WordPress 上使用 WP Githuber MD 插件&#xff0c;才用的 KaTex&#xff08;插件里面的 LaTex 模块有 bug&#xff0c;无法渲染&#xff09; 希腊字母 大写代…...

域攻防渗透之委派攻击

出身寒微&#xff0c;不是耻辱&#xff0c;能屈能伸&#xff0c;方为丈夫。 约束性委派的利用 原理 非约束性委派被委派的机器会直接得到发布委派的用户的TGT&#xff0c;是十分不安全的&#xff0c;因此微软推出了约束性委派&#xff0c;还扩充kerberos协议&#xff0c;添加…...

优雅的使用ChromeDriver

在网页自动化测试中,我们经常需要控制浏览器执行各种操作。对于Python开发者来说,可以使用 Selenium 库来实现这一目的。Selenium需要与浏览器的驱动程序(Driver)配合使用,本文将介绍如何在Windows 11系统下载ChromeDriver并正确保存。 第一步:确定Chrome浏览器版本号 打开Ch…...

react native hooks 页面出现重绘问题,如何解决

在React Native应用中&#xff0c;使用Hooks导致页面出现频繁重绘或性能问题时&#xff0c;可以尝试以下策略来优化和解决问题&#xff1a; 减少不必要的状态更新&#xff1a; 使用 React.memo 高阶组件包裹那些不需要每次父组件状态改变时都重新渲染的子组件。它通过浅比较pro…...

kafka安装并测试

一. Linux下ZooKeeper的安装及使用 1、创建工作目录&#xff0c;下载安装包 #创建安装目录 mkdir -p /opt/zookeeper #移动到目录 cd /opt/zookeepe #下载zookeeper安装包 wget https://mirrors.aliyun.com/apache/zookeeper/zookeeper-3.4.14/zookeeper-3.4.14.tar.gz #解…...

flutter路由跳转

Navigator.of(context).push(); //路由跳转(模块方式) Navigator.of(context).push(MaterialPageRoute(builder: (BuildContext context) {return const Page() ;//Page()指页面}, )) Navigator.pushNamed(context, "/") //路由跳转(路由方式) Navigator.pop(cont…...

微服务项目小结1

01.微服务的概念 单体、分布式、集群 (面试用到)微服务把之前的大的应用&#xff0c;按照业务功能拆分成若干个小的模块&#xff0c;每个模块都是独立的开发&#xff0c;测试&#xff0c;上线&#xff0c;维护缺点: 开发成本高&#xff0c;众多服务出错的处理(容错),分布式事务…...

【小熊猫 ide】更新支持mingw 支持c++20

没有format 头文件 GCC版本对C++的支持情况即使我使用11,也没有format 头文件小熊猫 ide https://wwe.lanzoui.com/b01os0mwd最新11可以自己更新https://royqh1979.gitee.io/redpandacpp/docsy/docs/gcc13 才支持format [7GCC 13 has added support for std::format.](https:/…...

ESD保护二极管ESD9B3.3ST5G 以更小的空间实现强大的保护 车规级TVS二极管更给力

什么是汽车级TVS二极管&#xff1f; TVS二极管是一种用于保护电子电路的电子元件。它主要用于电路中的过电压保护&#xff0c;防止电压过高而损坏其他部件。TVS二极管通常被称为“汽车级”是因为它们能够满足汽车电子系统的特殊要求。 在汽车电子系统中&#xff0c;由于车辆启…...

SAP BTP云上一个JVM与DB Connection纠缠的案例

前言 最近在CF (Cloud Foundry) 云平台上遇到一个比较经典的案例。因为牵扯到JVM &#xff08;app进程&#xff09;与数据库连接两大块&#xff0c;稍有不慎&#xff0c;很容易引起不快。 在云环境下&#xff0c;有时候相互扯皮的事蛮多。如果是DB的问题&#xff0c;就会找DB…...

Linux进程的基本概念

冯诺依曼体系结构 我们常见的计算机&#xff0c;如笔记本。我们不常见的计算机&#xff0c;如服务器&#xff0c;大部分都遵守冯诺依曼体系。 截至目前&#xff0c;我们所认识的计算机&#xff0c;都是有一个个的硬件组件组成 输入单元&#xff1a;包括键盘 , 鼠标&#xf…...

设计模式深度解析:AI如何影响装饰器模式与组合模式的选择与应用

​&#x1f308; 个人主页&#xff1a;danci_ &#x1f525; 系列专栏&#xff1a;《设计模式》《MYSQL应用》 &#x1f4aa;&#x1f3fb; 制定明确可量化的目标&#xff0c;坚持默默的做事。 AI如何影响装饰器模式与组合模式的选择与应用 在今天这个快速发展的技术时代&#…...

JAVA面试大全之微服务篇

目录 1、Spring Cloud 1.1、什么是微服务?谈谈你对微服务的理解? 1.2、什么是Spring Cloud? 1.3、springcloud中的组件有那些? 1.4、具体说说SpringCloud主要项目...

WiFiSpoof for Mac wifi地址修改工具

WiFiSpoof for Mac&#xff0c;一款专为Mac用户打造的网络隐私守护神器&#xff0c;让您在畅游互联网的同时&#xff0c;轻松保护个人信息安全。 软件下载&#xff1a;WiFiSpoof for Mac下载 在这个信息爆炸的时代&#xff0c;网络安全问题日益凸显。WiFiSpoof通过伪装MAC地址&…...

14 - grace数据处理 - 泄露误差改正 - 空域滤波法(Mascon法)

@[TOC](grace数据处理 - 泄露误差改正 - 空域滤波法(Mascon法)) 空域法的基本思想是假设地面某区域的质量变化是由一系列位置已知、质量未知的质量块(小范围区域)引起的,那么将GRACE反演的结果归算到n个质量块上的过程就是泄露信号恢复的过程。个人理解是这样的:假定已知研…...

openGauss MySQL兼容性增强

MySQL兼容性增强 可获得性 本特性自openGauss 3.0.0版本开始引入。 特性简介 本特性主要从以下几方面增强openGauss与MySQL的兼容性&#xff08;只列举部分典型语法&#xff0c;详情请参见《数据迁移指南》中“MySQL兼容性说明”章节&#xff09;&#xff1a;。 支持用户锁…...

【跟小嘉学 Linux 系统架构与开发】二、Linux发型版介绍与基础常用命令介绍

系列文章目录 【跟小嘉学 Linux 系统架构与开发】一、学习环境的准备与Linux系统介绍 【跟小嘉学 Linux 系统架构与开发】二、Linux发型版介绍与基础常用命令介绍 文章目录 系列文章目录[TOC](文章目录) 前言一、 Linux 发行版(Linux distribution)介绍二、Centos 虚拟机初始化…...

EMD关于信号的重建,心率提取

关于EMD的俩个假设&#xff1a; IMF 有两个假设条件&#xff1a; 在整个数据段内&#xff0c;极值点的个数和过零点的个数必须相等或相差最多不能超过一 个&#xff1b;在任意时刻&#xff0c;由局部极大值点形成的上包络线和由局部极小值点形成的下包络线 的平均值为零&#x…...

HEVC的Profile和Level介绍

文章目录 HEVCProfile&#xff08;配置&#xff09;&#xff1a;Level&#xff08;级别&#xff09;&#xff1a;划分标准 HEVC HEVC&#xff08;High Efficiency Video Coding&#xff09;&#xff0c;也称为H.265&#xff0c;是一种视频压缩标准&#xff0c;旨在提供比先前的…...

Springboot Thymeleaf 实现数据添加、修改、查询、删除

1、引言 在Spring Boot中使用Thymeleaf模板引擎实现数据的添加、修改、查询和删除功能&#xff0c;通常步骤如下&#xff1a; 在Controller类中&#xff0c;定义处理HTTP请求的方法。创建Thymeleaf模板来处理表单的显示和数据的绑定。 2、用户数据添加 1、 在Controller类中…...

CVPR 2025 MIMO: 支持视觉指代和像素grounding 的医学视觉语言模型

CVPR 2025 | MIMO&#xff1a;支持视觉指代和像素对齐的医学视觉语言模型 论文信息 标题&#xff1a;MIMO: A medical vision language model with visual referring multimodal input and pixel grounding multimodal output作者&#xff1a;Yanyuan Chen, Dexuan Xu, Yu Hu…...

阿里云ACP云计算备考笔记 (5)——弹性伸缩

目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...

MFC内存泄露

1、泄露代码示例 void X::SetApplicationBtn() {CMFCRibbonApplicationButton* pBtn GetApplicationButton();// 获取 Ribbon Bar 指针// 创建自定义按钮CCustomRibbonAppButton* pCustomButton new CCustomRibbonAppButton();pCustomButton->SetImage(IDB_BITMAP_Jdp26)…...

23-Oracle 23 ai 区块链表(Blockchain Table)

小伙伴有没有在金融强合规的领域中遇见&#xff0c;必须要保持数据不可变&#xff0c;管理员都无法修改和留痕的要求。比如医疗的电子病历中&#xff0c;影像检查检验结果不可篡改行的&#xff0c;药品追溯过程中数据只可插入无法删除的特性需求&#xff1b;登录日志、修改日志…...

为什么需要建设工程项目管理?工程项目管理有哪些亮点功能?

在建筑行业&#xff0c;项目管理的重要性不言而喻。随着工程规模的扩大、技术复杂度的提升&#xff0c;传统的管理模式已经难以满足现代工程的需求。过去&#xff0c;许多企业依赖手工记录、口头沟通和分散的信息管理&#xff0c;导致效率低下、成本失控、风险频发。例如&#…...

现代密码学 | 椭圆曲线密码学—附py代码

Elliptic Curve Cryptography 椭圆曲线密码学&#xff08;ECC&#xff09;是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础&#xff0c;例如椭圆曲线数字签…...

iOS性能调优实战:借助克魔(KeyMob)与常用工具深度洞察App瓶颈

在日常iOS开发过程中&#xff0c;性能问题往往是最令人头疼的一类Bug。尤其是在App上线前的压测阶段或是处理用户反馈的高发期&#xff0c;开发者往往需要面对卡顿、崩溃、能耗异常、日志混乱等一系列问题。这些问题表面上看似偶发&#xff0c;但背后往往隐藏着系统资源调度不当…...

【Go语言基础【12】】指针:声明、取地址、解引用

文章目录 零、概述&#xff1a;指针 vs. 引用&#xff08;类比其他语言&#xff09;一、指针基础概念二、指针声明与初始化三、指针操作符1. &&#xff1a;取地址&#xff08;拿到内存地址&#xff09;2. *&#xff1a;解引用&#xff08;拿到值&#xff09; 四、空指针&am…...

Linux部署私有文件管理系统MinIO

最近需要用到一个文件管理服务&#xff0c;但是又不想花钱&#xff0c;所以就想着自己搭建一个&#xff0c;刚好我们用的一个开源框架已经集成了MinIO&#xff0c;所以就选了这个 我这边对文件服务性能要求不是太高&#xff0c;单机版就可以 安装非常简单&#xff0c;几个命令就…...

软件工程 期末复习

瀑布模型&#xff1a;计划 螺旋模型&#xff1a;风险低 原型模型: 用户反馈 喷泉模型:代码复用 高内聚 低耦合&#xff1a;模块内部功能紧密 模块之间依赖程度小 高内聚&#xff1a;指的是一个模块内部的功能应该紧密相关。换句话说&#xff0c;一个模块应当只实现单一的功能…...