当前位置: 首页 > news >正文

KaTex 常用公式编辑

原文:https://blog.iyatt.com/?p=7854

注:语法上和 Latex 差不多一样,我是因为 WordPress 上使用 WP Githuber MD 插件,才用的 KaTex(插件里面的 LaTex 模块有 bug,无法渲染)

希腊字母

大写代码小写代码
AAα\alpha
BBβ\beta
Γ\Gammaγ\gamma
Δ\Deltaδ\delta
EEϵ\epsilon
ZZζ\zeta
HHη\eta
Θ\Thetaθ\theta
IIι\iota
KKκ\kappa
Λ\Lambdaλ\lambda
MMμ\mu
NNν\nu
Ξ\Xiξ\xi
OOο\omicron
Π\Piπ\pi
PPρ\rho
Σ\Sigmaσ\sigma
TTτ\tau
ΥΥυ\upsilon
Φ\Phiϕ\phi
XXχ\chi
Ψ\Psiψ\psi
Ω\Omegaω\omega

符号

乘 \times × \times ×
除 \div ÷ \div ÷
加减 \pm ± \pm ±
减加 \mp ∓ \mp
偏导数 \partial ∂ \partial
小于 \lt < \lt <
大于 \gt > \gt >
小于等于 \le ≤ \le
大于等于 \ge ≥ \ge
不等于 \ne ≠ \ne =
加 \not 否定,如 \not \lt ≮ \not \lt <
并集 \cup ∪ \cup
交集 \cap ∩ \cap
子集 subset ⊂ \subset ,subseteq ⊊ \subsetneq
差集 \setminus ∖ \setminus
非子集 \subsetneq ⊊ \subsetneq
父集 \supset ⊃ \supset
属于 \in ∈ \in
不属于 \notin ∉ \notin /
空集 \emptyset ∅ \emptyset
空 \varnothing ∅ \varnothing
虚数 i、j \imath ı \imath , \jmath ȷ \jmath
异或 \oplus ⊕ \oplus
同与 \otimes ⊗ \otimes
同或 \odot ⊙ \odot
与 \land ∧ \land
或 \lor ∨ \lor
非 \lnot ¬ \lnot ¬
点乘 \cdot ⋅ \cdot
平均运算符 \overline{x} x ‾ \overline{x} x
向量(单)\vec{x} x ⃗ \vec{x} x
向量(多)\overrightarrow{xy} x y → \overrightarrow{xy} xy
梯度算子 \nabla ∇ \nabla
空格 \ ,比如 a\ b a b a\ b a b
任意 \forall ∀ \forall
存在 \exists ∃ \exists
反斜杠 \backslash \ \backslash \

\to → \to
\rightarrow → \rightarrow
\leftarrow ← \leftarrow
\leftrightarrow ↔ \leftrightarrow
\uparrow ↑ \uparrow
\downarrow ↓ \downarrow
\updownarrow ↕ \updownarrow
\Rightarrow ⇒ \Rightarrow
\Leftarrow ⇐ \Leftarrow
\Leftrightarrow ⇔ \Leftrightarrow
\Uparrow ⇑ \Uparrow
\Downarrow ⇓ \Downarrow
\Updownarrow ⇕ \Updownarrow
长箭头,前面加 long 或 Long,比如 \longrightarrow ⟶ \longrightarrow ,\Longrightarrow ⟹ \Longrightarrow

\twoheadrightarrow ↠ \twoheadrightarrow
\rightarrowtail ↣ \rightarrowtail
\looparrowright ↬ \looparrowright
\curvearrowright ↷ \curvearrowright
\circlearrowright ↻ \circlearrowright
\Rsh ↱ \Rsh
\multimap ⊸ \multimap
\leftrightsquigarrow ↭ \leftrightsquigarrow
\rightsquigarrow ⇝ \rightsquigarrow
\leadsto ⇝ \leadsto
\nearrow ↗ \nearrow
\searrow ↘ \searrow
\swarrow ↙ \swarrow
\nwarrow ↖ \nwarrow
\nleftarrow ↚ \nleftarrow
\nrightarrow ↛ \nrightarrow
\nLeftarrow ⇍ \nLeftarrow
\nRightarrow ⇏ \nRightarrow
\nleftrightarrow ↮ \nleftrightarrow
\nLeftrightarrow ⇎ \nLeftrightarrow
\dashrightarrow ⇢ \dashrightarrow
\dashleftarrow ⇠ \dashleftarrow
\leftleftarrows ⇇ \leftleftarrows
\leftrightarrows ⇆ \leftrightarrows
\twoheadleftarrow ↞ \twoheadleftarrow
\leftarrowtail ↢ \leftarrowtail
\looparrowleft ↫ \looparrowleft
\curvearrowleft ↶ \curvearrowleft
\circlearrowleft ↺ \circlearrowleft
\Lsh ↰ \Lsh
\mapsto ↦ \mapsto
\hookleftarrow ↩ \hookleftarrow
\hookrightarrow ↪ \hookrightarrow
\upharpoonright ↾ \upharpoonright
\upharpoonleft ↿ \upharpoonleft
\downharpoonright ⇂ \downharpoonright
\downharpoonleft ⇃ \downharpoonleft
\leftharpoonup ↼ \leftharpoonup
\rightharpoonup ⇀ \rightharpoonup
\leftharpoondown ↽ \leftharpoondown
\rightharpoondown ⇁ \rightharpoondown
\upuparrows ⇈ \upuparrows
\downdownarrows ⇊ \downdownarrows
\rightrightarrows ⇉ \rightrightarrows
\rightleftarrows ⇄ \rightleftarrows
\rightrightarrows ⇉ \rightrightarrows
\rightleftarrows ⇄ \rightleftarrows
\rightleftharpoons ⇌ \rightleftharpoons
\leftrightharpoons ⇋ \leftrightharpoons

\mapsto ↦ \mapsto
\forall ∀ \forall
\exists ∃ \exists
\top ⊤ \top
\bot ⊥ \bot
\vDash ⊨ \vDash
\star ⋆ \star
\ast ∗ \ast
\bullet ∙ \bullet
约等于 \approx ≈ \approx
波浪号 \sim ∼ \sim
\equiv ≡ \equiv
\prec ≺ \prec
无穷 \infty ∞ \infty
\aleph_o ℵ o \aleph_o o
\aleph_o ℵ o \aleph_o o
\Im ℑ \Im
\Re ℜ \Re
\ldots … \ldots
\cdots ⋯ \cdots
\vdots ⋮ \vdots
\ddots ⋱ \ddots
\hat x x ^ \hat x x^
\widehat {xy} x y ^ \widehat {xy} xy
\dot x x ˙ \dot x x˙
\ddot x x ¨ \ddot x x¨
\dot {\dot x} x ˙ ˙ \dot {\dot x} x˙˙
\mathring{U} U ˚ \mathring{U} U˚

##上下添加公式

\overset{x=9}{=}
= x = 9 \overset{x=9}{=} =x=9

\underset{x=\sin\theta}{=}
= x = sin ⁡ θ \underset{x=\sin\theta}{=} x=sinθ=

\xlongequal[下方公式]{上方公式}
= 下方公式 上方公式 \xlongequal[下方公式]{上方公式} 上方公式 下方公式

上下大括号

\overbrace{a+b+c}^x a + b + c ⏞ x \overbrace{a+b+c}^x a+b+c x

a+\underbrace{b+c}_y a + b + c ⏟ y a+\underbrace{b+c}_y a+y b+c

上下标

A^m_n A n m A_n^m Anm
A_n^m A n m A_n^m Anm
x^2 x 2 x^2 x2
a_n a n a_n an
a_{n+1} a n + 1 a_{n+1} an+1
A{BC} A B C A^{B^C} ABC
{AB}C A B C {A^B}^C ABC

根号

\sqrt{25} 25 \sqrt{25} 25
\sqrt[3]{27} 27 3 \sqrt[3]{27} 327

分式

\frac{a+b}{a-b} a + b a − b \frac{a+b}{a-b} aba+b
\frac{4}{5} 4 5 \frac{4}{5} 54

括号

(), [] 直接使用,{ 和 } 有特殊含义,需要使用 { 和 } 表示。

尖括号使用
\langle ⟨ \langle
\rangle ⟩ \rangle

求和

\sum_{i=1}^n ∑ i = 1 n \sum_{i=1}^n i=1n
\sum_{j=0}^k ∑ j = 0 k \sum_{j=0}^k j=0k

连乘

\prod_{i=0}^nx ∏ i = 0 n \prod_{i=0}^n i=0n

积分

\int_0^x ∫ 0 x \int_0^x 0x
\iint_0^x ∬ 0 x \iint_0^x 0x
\iiint_0^x ∭ 0 x \iiint_0^x 0x

极限

\lim_{x \to \infty}(1 + \frac{1}{x})^x
lim ⁡ x → ∞ ( 1 + 1 x ) x \lim_{x \to \infty}(1 + \frac{1}{x})^x xlim(1+x1)x

换行等号对齐

\begin{aligned}
19&=10+9 \\
&=11+8 \\
&=12+7
\end{aligned}

19 = 10 + 9 = 11 + 8 = 12 + 7 \begin{aligned} 19&=10+9 \\ &=11+8 \\ &=12+7 \end{aligned} 19=10+9=11+8=12+7

分类

f(x)=
\begin{cases}
x+1, &x<0\\
0, &x=0\\
2x-1, &x>0
\end{cases}

f ( x ) = { x + 1 , x < 0 0 , x = 0 2 x − 1 , x > 0 f(x)= \begin{cases} x+1, &x<0\\ 0, &x=0\\ 2x-1, &x>0 \end{cases} f(x)= x+1,0,2x1,x<0x=0x>0

方程组

\left \{
\begin{array}{l} % l 靠左、c 居中、r 靠右
x+y+z=6 \\
2x-y+z=3 \\
x+y-z=0
\end{array}
\right.

{ x + y + z = 6 2 x − y + z = 3 x + y − z = 0 \left \{ \begin{array}{l} x+y+z=6 \\ 2x-y+z=3 \\ x+y-z=0 \end{array} \right. x+y+z=62xy+z=3x+yz=0

多列对齐

\begin{array}{l l} % l 靠左、c 居中、r 靠右
x+y+z=6 & x+y+z=6\\
2x-y+z=3 & 2x-y+z=3 \\
x+y-z=0 & x+y-z=0
\end{array}

x + y + z = 6 x + y + z = 6 2 x − y + z = 3 2 x − y + z = 3 x + y − z = 0 x + y − z = 0 \begin{array}{l l} % l 靠左、c 居中、r 靠右 x+y+z=6 & x+y+z=6\\ 2x-y+z=3 & 2x-y+z=3 \\ x+y-z=0 & x+y-z=0 \end{array} x+y+z=62xy+z=3x+yz=0x+y+z=62xy+z=3x+yz=0

矩阵

\begin{matrix}
1&2&3 \\
4&5&6 \\
7&8&9
\end{matrix}

1 2 3 4 5 6 7 8 9 \begin{matrix} 1&2&3 \\ 4&5&6 \\ 7&8&9 \end{matrix} 147258369

\left \{
\begin{matrix}
1&2&3 \\
4&5&6 \\
7&8&9
\end{matrix}
\right \}

{ 1 2 3 4 5 6 7 8 9 } \left \{ \begin{matrix} 1&2&3 \\ 4&5&6 \\ 7&8&9 \end{matrix} \right \} 147258369

\left |
\begin{matrix}
1&2&3 \\
4&5&6 \\
7&8&9
\end{matrix}
\right |

∣ 1 2 3 4 5 6 7 8 9 ∣ \left | \begin{matrix} 1&2&3 \\ 4&5&6 \\ 7&8&9 \end{matrix} \right | 147258369

\left (
\begin{matrix}
1&2&3 \\
4&5&6 \\
7&8&9
\end{matrix}
\right )

( 1 2 3 4 5 6 7 8 9 ) \left ( \begin{matrix} 1&2&3 \\ 4&5&6 \\ 7&8&9 \end{matrix} \right ) 147258369

上面是使用 \left 和 \right 来添加的左右括号,也可以不用这对符号,将 \begin 和 \end 后面的词分别换为 pmatrix、bmatrix、Bmatrix、vmatrix、Vmatrix,分别对应小括号、中括号、大括号、单竖线、双竖线,如:

\begin{pmatrix}
1&2&3 \\
4&5&6 \\
7&8&9
\end{pmatrix}

( 1 2 3 4 5 6 7 8 9 ) \begin{pmatrix} 1&2&3 \\ 4&5&6 \\ 7&8&9 \end{pmatrix} 147258369

\begin{array} {c c | c} % c 居中,r 右对齐,l 左对齐,竖线为插入竖线的位置
1&2&3 \\
\hline % 插入横线
4&5&6 \\
7&8&9
\end{array}

1 2 3 4 5 6 7 8 9 \begin{array} {c c | c} 1&2&3 \\ \hline 4&5&6 \\ 7&8&9 \end{array} 147258369

表格

\begin{array}{c|lcr}
n & \text{Left} & \text{Center} & \text{Right} \\
\hline
1 & 2 & 1 & 4 \\
4 & 3 & 2 & 1 \\
1.0 & 2.0 & 3000 & 3\times10^5 \\
\end{array}

n Left Center Right 1 2 1 4.0 4 3 2 1 1.0 2.0 3000 3 × 1 0 5 \begin{array}{c|lcr} n & \text{Left} & \text{Center} & \text{Right} \\ \hline 1 & 2 & 1 & 4.0 \\ 4 & 3 & 2 & 1 \\ 1.0 & 2.0 & 3000 & 3\times10^5 \\ \end{array} n141.0Left232.0Center123000Right4.013×105

\begin{array}{|c|c|}
\hline
\text{公式1} & \text{公式2} \\
\hline
\begin{aligned}
a &= b + c \\&= d + e
\end{aligned}
&
\begin{aligned}
f &= g + h \\&= i + j
\end{aligned} \\
\hline
\end{array}

公式1 公式2 a = b + c = d + e f = g + h = i + j \begin{array}{|c|c|} \hline \text{公式1} & \text{公式2} \\ \hline \begin{aligned} a &= b + c \\ &= d + e \end{aligned} & \begin{aligned} f &= g + h \\ &= i + j \end{aligned} \\ \hline \end{array} 公式1a=b+c=d+e公式2f=g+h=i+j

字体

黑板粗体

一般用于表示数学和物理学中的向量或集合

\mathbb{ABCDEFGHIJKLMNOPQRSTUVWXYZ} A B C D E F G H I J K L M N O P Q R S T U V W X Y Z \mathbb{ABCDEFGHIJKLMNOPQRSTUVWXYZ} ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathbb{abcdefghijklmnopqrstuvwxyz} a b c d e f g h i j k l m n o p q r s t u v w x y z \mathbb{abcdefghijklmnopqrstuvwxyz} abcdefghijklmnopqrstuvwxyz

正粗体

\mathbf{ABCDEFGHIJKLMNOPQRSTUVWXYZ} A B C D E F G H I J K L M N O P Q R S T U V W X Y Z \mathbf{ABCDEFGHIJKLMNOPQRSTUVWXYZ} ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathbf{abcdefghijklmnopqrstuvwxyz} a b c d e f g h i j k l m n o p q r s t u v w x y z \mathbf{abcdefghijklmnopqrstuvwxyz} abcdefghijklmnopqrstuvwxyz

罗马体

\mathrm{ABCDEFGHIJKLMNOPQRSTUVWXYZ} A B C D E F G H I J K L M N O P Q R S T U V W X Y Z \mathrm{ABCDEFGHIJKLMNOPQRSTUVWXYZ} ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathrm{abcdefghijklmnopqrstuvwxyz} a b c d e f g h i j k l m n o p q r s t u v w x y z \mathrm{abcdefghijklmnopqrstuvwxyz} abcdefghijklmnopqrstuvwxyz

哥特体

\mathfrak{ABCDEFGHIJKLMNOPQRSTUVWXYZ} A B C D E F G H I J K L M N O P Q R S T U V W X Y Z \mathfrak{ABCDEFGHIJKLMNOPQRSTUVWXYZ} ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathfrak{abcdefghijklmnopqrstuvwxyz} a b c d e f g h i j k l m n o p q r s t u v w x y z \mathfrak{abcdefghijklmnopqrstuvwxyz} abcdefghijklmnopqrstuvwxyz

打印体

\mathtt{ABCDEFGHIJKLMNOPQRSTUVWXYZ} A B C D E F G H I J K L M N O P Q R S T U V W X Y Z \mathtt{ABCDEFGHIJKLMNOPQRSTUVWXYZ} ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathtt{abcdefghijklmnopqrstuvwxyz} a b c d e f g h i j k l m n o p q r s t u v w x y z \mathtt{abcdefghijklmnopqrstuvwxyz} abcdefghijklmnopqrstuvwxyz

手写体

\mathcal{ABCDEFGHIJKLMNOPQRSTUVWXYZ} A B C D E F G H I J K L M N O P Q R S T U V W X Y Z \mathcal{ABCDEFGHIJKLMNOPQRSTUVWXYZ} ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathcal{abcdefghijklmnopqrstuvwxyz} a b c d e f g h i j k l m n o p q r s t u v w x y z \mathcal{abcdefghijklmnopqrstuvwxyz} abcdefghijklmnopqrstuvwxyz

相关文章:

KaTex 常用公式编辑

原文&#xff1a;https://blog.iyatt.com/?p7854 注&#xff1a;语法上和 Latex 差不多一样&#xff0c;我是因为 WordPress 上使用 WP Githuber MD 插件&#xff0c;才用的 KaTex&#xff08;插件里面的 LaTex 模块有 bug&#xff0c;无法渲染&#xff09; 希腊字母 大写代…...

域攻防渗透之委派攻击

出身寒微&#xff0c;不是耻辱&#xff0c;能屈能伸&#xff0c;方为丈夫。 约束性委派的利用 原理 非约束性委派被委派的机器会直接得到发布委派的用户的TGT&#xff0c;是十分不安全的&#xff0c;因此微软推出了约束性委派&#xff0c;还扩充kerberos协议&#xff0c;添加…...

优雅的使用ChromeDriver

在网页自动化测试中,我们经常需要控制浏览器执行各种操作。对于Python开发者来说,可以使用 Selenium 库来实现这一目的。Selenium需要与浏览器的驱动程序(Driver)配合使用,本文将介绍如何在Windows 11系统下载ChromeDriver并正确保存。 第一步:确定Chrome浏览器版本号 打开Ch…...

react native hooks 页面出现重绘问题,如何解决

在React Native应用中&#xff0c;使用Hooks导致页面出现频繁重绘或性能问题时&#xff0c;可以尝试以下策略来优化和解决问题&#xff1a; 减少不必要的状态更新&#xff1a; 使用 React.memo 高阶组件包裹那些不需要每次父组件状态改变时都重新渲染的子组件。它通过浅比较pro…...

kafka安装并测试

一. Linux下ZooKeeper的安装及使用 1、创建工作目录&#xff0c;下载安装包 #创建安装目录 mkdir -p /opt/zookeeper #移动到目录 cd /opt/zookeepe #下载zookeeper安装包 wget https://mirrors.aliyun.com/apache/zookeeper/zookeeper-3.4.14/zookeeper-3.4.14.tar.gz #解…...

flutter路由跳转

Navigator.of(context).push(); //路由跳转(模块方式) Navigator.of(context).push(MaterialPageRoute(builder: (BuildContext context) {return const Page() ;//Page()指页面}, )) Navigator.pushNamed(context, "/") //路由跳转(路由方式) Navigator.pop(cont…...

微服务项目小结1

01.微服务的概念 单体、分布式、集群 (面试用到)微服务把之前的大的应用&#xff0c;按照业务功能拆分成若干个小的模块&#xff0c;每个模块都是独立的开发&#xff0c;测试&#xff0c;上线&#xff0c;维护缺点: 开发成本高&#xff0c;众多服务出错的处理(容错),分布式事务…...

【小熊猫 ide】更新支持mingw 支持c++20

没有format 头文件 GCC版本对C++的支持情况即使我使用11,也没有format 头文件小熊猫 ide https://wwe.lanzoui.com/b01os0mwd最新11可以自己更新https://royqh1979.gitee.io/redpandacpp/docsy/docs/gcc13 才支持format [7GCC 13 has added support for std::format.](https:/…...

ESD保护二极管ESD9B3.3ST5G 以更小的空间实现强大的保护 车规级TVS二极管更给力

什么是汽车级TVS二极管&#xff1f; TVS二极管是一种用于保护电子电路的电子元件。它主要用于电路中的过电压保护&#xff0c;防止电压过高而损坏其他部件。TVS二极管通常被称为“汽车级”是因为它们能够满足汽车电子系统的特殊要求。 在汽车电子系统中&#xff0c;由于车辆启…...

SAP BTP云上一个JVM与DB Connection纠缠的案例

前言 最近在CF (Cloud Foundry) 云平台上遇到一个比较经典的案例。因为牵扯到JVM &#xff08;app进程&#xff09;与数据库连接两大块&#xff0c;稍有不慎&#xff0c;很容易引起不快。 在云环境下&#xff0c;有时候相互扯皮的事蛮多。如果是DB的问题&#xff0c;就会找DB…...

Linux进程的基本概念

冯诺依曼体系结构 我们常见的计算机&#xff0c;如笔记本。我们不常见的计算机&#xff0c;如服务器&#xff0c;大部分都遵守冯诺依曼体系。 截至目前&#xff0c;我们所认识的计算机&#xff0c;都是有一个个的硬件组件组成 输入单元&#xff1a;包括键盘 , 鼠标&#xf…...

设计模式深度解析:AI如何影响装饰器模式与组合模式的选择与应用

​&#x1f308; 个人主页&#xff1a;danci_ &#x1f525; 系列专栏&#xff1a;《设计模式》《MYSQL应用》 &#x1f4aa;&#x1f3fb; 制定明确可量化的目标&#xff0c;坚持默默的做事。 AI如何影响装饰器模式与组合模式的选择与应用 在今天这个快速发展的技术时代&#…...

JAVA面试大全之微服务篇

目录 1、Spring Cloud 1.1、什么是微服务?谈谈你对微服务的理解? 1.2、什么是Spring Cloud? 1.3、springcloud中的组件有那些? 1.4、具体说说SpringCloud主要项目...

WiFiSpoof for Mac wifi地址修改工具

WiFiSpoof for Mac&#xff0c;一款专为Mac用户打造的网络隐私守护神器&#xff0c;让您在畅游互联网的同时&#xff0c;轻松保护个人信息安全。 软件下载&#xff1a;WiFiSpoof for Mac下载 在这个信息爆炸的时代&#xff0c;网络安全问题日益凸显。WiFiSpoof通过伪装MAC地址&…...

14 - grace数据处理 - 泄露误差改正 - 空域滤波法(Mascon法)

@[TOC](grace数据处理 - 泄露误差改正 - 空域滤波法(Mascon法)) 空域法的基本思想是假设地面某区域的质量变化是由一系列位置已知、质量未知的质量块(小范围区域)引起的,那么将GRACE反演的结果归算到n个质量块上的过程就是泄露信号恢复的过程。个人理解是这样的:假定已知研…...

openGauss MySQL兼容性增强

MySQL兼容性增强 可获得性 本特性自openGauss 3.0.0版本开始引入。 特性简介 本特性主要从以下几方面增强openGauss与MySQL的兼容性&#xff08;只列举部分典型语法&#xff0c;详情请参见《数据迁移指南》中“MySQL兼容性说明”章节&#xff09;&#xff1a;。 支持用户锁…...

【跟小嘉学 Linux 系统架构与开发】二、Linux发型版介绍与基础常用命令介绍

系列文章目录 【跟小嘉学 Linux 系统架构与开发】一、学习环境的准备与Linux系统介绍 【跟小嘉学 Linux 系统架构与开发】二、Linux发型版介绍与基础常用命令介绍 文章目录 系列文章目录[TOC](文章目录) 前言一、 Linux 发行版(Linux distribution)介绍二、Centos 虚拟机初始化…...

EMD关于信号的重建,心率提取

关于EMD的俩个假设&#xff1a; IMF 有两个假设条件&#xff1a; 在整个数据段内&#xff0c;极值点的个数和过零点的个数必须相等或相差最多不能超过一 个&#xff1b;在任意时刻&#xff0c;由局部极大值点形成的上包络线和由局部极小值点形成的下包络线 的平均值为零&#x…...

HEVC的Profile和Level介绍

文章目录 HEVCProfile&#xff08;配置&#xff09;&#xff1a;Level&#xff08;级别&#xff09;&#xff1a;划分标准 HEVC HEVC&#xff08;High Efficiency Video Coding&#xff09;&#xff0c;也称为H.265&#xff0c;是一种视频压缩标准&#xff0c;旨在提供比先前的…...

Springboot Thymeleaf 实现数据添加、修改、查询、删除

1、引言 在Spring Boot中使用Thymeleaf模板引擎实现数据的添加、修改、查询和删除功能&#xff0c;通常步骤如下&#xff1a; 在Controller类中&#xff0c;定义处理HTTP请求的方法。创建Thymeleaf模板来处理表单的显示和数据的绑定。 2、用户数据添加 1、 在Controller类中…...

观成科技:隐蔽隧道工具Ligolo-ng加密流量分析

1.工具介绍 Ligolo-ng是一款由go编写的高效隧道工具&#xff0c;该工具基于TUN接口实现其功能&#xff0c;利用反向TCP/TLS连接建立一条隐蔽的通信信道&#xff0c;支持使用Let’s Encrypt自动生成证书。Ligolo-ng的通信隐蔽性体现在其支持多种连接方式&#xff0c;适应复杂网…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)

HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...

微信小程序之bind和catch

这两个呢&#xff0c;都是绑定事件用的&#xff0c;具体使用有些小区别。 官方文档&#xff1a; 事件冒泡处理不同 bind&#xff1a;绑定的事件会向上冒泡&#xff0c;即触发当前组件的事件后&#xff0c;还会继续触发父组件的相同事件。例如&#xff0c;有一个子视图绑定了b…...

Java如何权衡是使用无序的数组还是有序的数组

在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...

【HarmonyOS 5.0】DevEco Testing:鸿蒙应用质量保障的终极武器

——全方位测试解决方案与代码实战 一、工具定位与核心能力 DevEco Testing是HarmonyOS官方推出的​​一体化测试平台​​&#xff0c;覆盖应用全生命周期测试需求&#xff0c;主要提供五大核心能力&#xff1a; ​​测试类型​​​​检测目标​​​​关键指标​​功能体验基…...

Python爬虫实战:研究feedparser库相关技术

1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的信息资源。RSS(Really Simple Syndication)作为一种标准化的信息聚合技术,被广泛用于网站内容的发布和订阅。通过 RSS,用户可以方便地获取网站更新的内容,而无需频繁访问各个网站。 然而,互联网…...

Frozen-Flask :将 Flask 应用“冻结”为静态文件

Frozen-Flask 是一个用于将 Flask 应用“冻结”为静态文件的 Python 扩展。它的核心用途是&#xff1a;将一个 Flask Web 应用生成成纯静态 HTML 文件&#xff0c;从而可以部署到静态网站托管服务上&#xff0c;如 GitHub Pages、Netlify 或任何支持静态文件的网站服务器。 &am…...

ArcGIS Pro制作水平横向图例+多级标注

今天介绍下载ArcGIS Pro中如何设置水平横向图例。 之前我们介绍了ArcGIS的横向图例制作&#xff1a;ArcGIS横向、多列图例、顺序重排、符号居中、批量更改图例符号等等&#xff08;ArcGIS出图图例8大技巧&#xff09;&#xff0c;那这次我们看看ArcGIS Pro如何更加快捷的操作。…...

【碎碎念】宝可梦 Mesh GO : 基于MESH网络的口袋妖怪 宝可梦GO游戏自组网系统

目录 游戏说明《宝可梦 Mesh GO》 —— 局域宝可梦探索Pokmon GO 类游戏核心理念应用场景Mesh 特性 宝可梦玩法融合设计游戏构想要素1. 地图探索&#xff08;基于物理空间 广播范围&#xff09;2. 野生宝可梦生成与广播3. 对战系统4. 道具与通信5. 延伸玩法 安全性设计 技术选…...

MySQL 部分重点知识篇

一、数据库对象 1. 主键 定义 &#xff1a;主键是用于唯一标识表中每一行记录的字段或字段组合。它具有唯一性和非空性特点。 作用 &#xff1a;确保数据的完整性&#xff0c;便于数据的查询和管理。 示例 &#xff1a;在学生信息表中&#xff0c;学号可以作为主键&#xff…...