当前位置: 首页 > news >正文

http和https的区别!

HTTP 明文传输,数据都是未加密的,安全性较差,HTTPS(SSL+HTTP) 数据传输过程是加密的,安全性较好。

使用 HTTPS 协议需要到 CA(Certificate Authority,数字证书认证机构) 申请证书,一般免费证书较少,因而需要一定费用。证书颁发机构如:Symantec、Comodo、GoDaddy 和 GlobalSign 等。

HTTP 页面响应速度比 HTTPS 快,主要是因为 HTTP 使用 TCP 三次握手建立连接,客户端和服务器需要交换 3 个包,而 HTTPS除了 TCP 的三个包,还要加上 ssl 握手需要的 9 个包,所以一共是 12 个包。

HTTP和 HTTPS 使用的是完全不同的连接方式,用的端口也不一样,前者是 80,后者是 443。

HTTPS 其实就是建构在 SSL/TLS 之上的 HTTP 协议,所以,要比较 HTTPS 比 HTTP 要更耗费服务器资源。

tcp三次握手。

第一次握手:客户端尝试连接服务器,向服务器发送 syn 包(同步序列编号Synchronize Sequence Numbers),syn=j,客户端进入 SYN_SEND 状态等待服务器确认

第二次握手:服务器接收客户端syn包并确认(ack=j+1),同时向客户端发送一个 SYN包(syn=k),即 SYN+ACK 包,此时服务器进入 SYN_RECV 状态

第三次握手:第三次握手:客户端收到服务器的SYN+ACK包,向服务器发送确认包ACK(ack=k+1),此包发送完毕,客户端和服务器进入ESTABLISHED状态,完成三次握手

相关文章:

http和https的区别!

HTTP 明文传输,数据都是未加密的,安全性较差,HTTPS(SSLHTTP) 数据传输过程是加密的,安全性较好。 使用 HTTPS 协议需要到 CA(Certificate Authority,数字证书认证机构) …...

使用AOP实现打印日志

首先创建annotation.SystemLog类: package com.gjh.annotation;import java.lang.annotation.ElementType; import java.lang.annotation.Retention; import java.lang.annotation.RetentionPolicy; import java.lang.annotation.Target;Target(ElementType.METHOD…...

2024年新算法-冠豪猪优化算法(CPO),CPO-RF-Adaboost,CPO优化随机森林RF-Adaboost回归预测-附代码

冠豪猪优化算法(CPO)是一种基于自然界中猪群觅食行为启发的优化算法。该算法模拟了猪群在寻找食物时的集群行为,通过一系列的迭代过程来优化目标函数,以寻找最优解。在这个算法中,猪被分为几个群体,每个群体…...

浅谈高阶智能驾驶-NOA领航辅助的技术与发展

浅谈高阶智能驾驶-NOA领航辅助的技术与发展 附赠自动驾驶学习资料和量产经验:链接 2019年在国内首次试驾特斯拉NOA领航辅助驾驶的时候,当时兴奋的觉得未来已来;2020年在试驾蔚来NOP领航辅助驾驶的时候,顿时不敢小看国内新势力了;现在如果哪家…...

大模型 智能体 智能玩具 智能音箱 构建教程 wukong-robot

视频演示 10:27 一、背景 继上文《ChatGPT+小爱音响能擦出什么火花?》可以看出大伙对AI+硬件的结合十分感兴趣,但上文是针对市场智能音响的AI植入,底层是通过轮询拦截,算是hack兼容,虽然官方有提供开发者接口,也免不了有许多局限性(比如得通过特定指令唤醒),不利于我…...

Clickhouse-表引擎探索之MergeTree

引言 前文曾说过,Clickhouse是一个强大的数据库Clickhouse-一个潜力无限的大数据分析数据库系统 其中一个强大的点就在于支持各类表引擎以用于不同的业务场景。 MergeTree MergeTree系列的引擎被设计用于插入极大量的数据到一张表当中。数据可以以数据片段的形式一…...

网络电视盒子哪个好?小编分享电视盒子品牌排行榜

电视盒子使用频率高,功能丰富,价格划算,是我们日常不可或缺的部分,小编经常会被问到与电视盒子相关的问题,考虑到很多朋友并不了解网络电视盒子哪个好,这次我来分享业内权威电视盒子品牌排行榜,…...

开源模型应用落地-baichuan2模型小试-入门篇(三)

一、前言 相信您已经学会了如何在Windows环境下以最低成本、无需GPU的情况下运行baichuan2大模型。现在,让我们进一步探索如何在Linux环境下,并且拥有GPU的情况下运行baichuan2大模型,以提升性能和效率。 二、术语 2.1. CentOS CentOS是一种基于Linux的自由开源操作…...

景联文科技高质量大模型训练数据汇总!

3月25日,2024年中国发展高层论坛年会上,国家数据局局长刘烈宏在“释放数据要素价值,助力可持续发展”的演讲中表示,中国10亿参数规模以上的大模型数量已超100个。 当前,国内AI大模型发展仍面临诸多困境。其中&#xff…...

【python】正则表达式

文章目录 正则表达式对象re.RegexObjectre.MatchObject符号说明匹配基础匹配?=、?<=、?!、?<!字符类re模块编译正则表达式compile 函数匹配字符串re.matchre.searchre.findall...

学习vue3第十二节(组件的使用与类型)

1、组件的作用用途 目的&#xff1a; 提高代码的复用度&#xff0c;和便于维护&#xff0c;通过封装将复杂的功能代码拆分为更小的模块&#xff0c;方便管理&#xff0c; 当我们需要实现相同的功能时&#xff0c;我们只需要复用已经封装好的组件&#xff0c;而不需要重新编写相…...

flume配置文件后不能跟注释!!

先总结&#xff1a;Flume配置文件后面&#xff0c;不能跟注释&#xff0c;可以单起一行写注释 报错代码&#xff1a; [ERROR - org.apache.flume.SinkRunner$PollingRunner.run(SinkRunner.java:158)] Unable to deliver event. Exception follows. org.apache.flume.EventDel…...

【docker】Dockerfile自定义镜像

&#x1f4dd;个人主页&#xff1a;五敷有你 &#x1f525;系列专栏&#xff1a;中间件 ⛺️稳中求进&#xff0c;晒太阳 1.Dockerfile自定义镜像 常见的镜像在DockerHub就能找到&#xff0c;但是我们自己写的项目就必须自己构建镜像了。 而要自定义镜像&#xff0c;就…...

webpack项目打包console git分支、打包时间等信息 exec

相关链接 MDN toLocaleString child_process Node.js strftime 格式 代码 buildinfo.js const { execSync, exec } require("child_process"); // exec: 在 Windows 执行 bat 和 cmd 脚本// execSync 同步 // exec 异步// exec 使用方法 // exec(git show -s,…...

Linux centos7离线搭建FTP

1、下载、安装ftp 下载ftp安装包&#xff0c;可以从rpm下载站搜索合适的版本&#xff0c;使用wget命令下载。 wget https://mirrors.aliyun.com/centos/7/os/x86_64/Packages/vsftpd-3.0.2-28.el7.x86_64.rpm 安装&#xff1a; rpm -ivh vsftpd-3.0.2-28.el7.x86_64.rpm 2…...

关于GPT-SoVITS语音合成的效果展示(西游之西天送葬团)

目录 使用效果总结合成效果展示 使用效果总结 使用的是2024年03月21日22点28分更新的版本。 使用起来很方便&#xff0c;从它“自带界面”这点就能看出&#xff0c;易于使用也是目的之一&#xff0c;而且从训练到推理的每个步骤都能在界面中完成。 集成了多个实用工具&#…...

如何安装OceanBase的OBD

选择一&#xff1a;借助 all-in-one 安装包安装 OBD&#xff08;推荐&#xff09; OceanBase 社区版的all-in-one安装包是一个集成了多种工具的一键式安装包。它包含了数据库软件本身&#xff0c;以及OBD、OBProxy、OBClient&#xff0c;自4.1版本起&#xff0c;还额外加入了O…...

Unity 读写Excel打包后无法运行可能的解决方案

读写Excel打包后无法运行可能的解决方案 &#x1f4a1;.适用于NPOI、EPPlus。 &#x1f4a1;.下载 资源包&#x1f448;,解压后把dll放到Assets目录中再重新打包即可。...

算法沉淀 —— 深度搜索(dfs)

算法沉淀 —— 深度搜索&#xff08;dfs&#xff09; 一、计算布尔二叉树的值二、求根节点到叶节点数字之和三、二叉树剪枝四、验证二叉搜索树五、二叉搜索树中第K小的元素 一、计算布尔二叉树的值 【题目链接】&#xff1a;2331. 计算布尔二叉树的值 【题目】&#xff1a; …...

#设计模式#3.1用做松鼠桂鱼来理解抽象工厂(对象创建型模式)

概念&#xff1a;xx工厂&#xff0c;xx产品 区分 工厂是动作&#xff0c;产品是结果&#xff08;菜品&#xff09; 概念&#xff1a;抽象xx&#xff0c;具体xx 区分 抽象产品&#xff1a;“中式菜品” 具体产品&#xff1a;“麻婆豆腐”、“宫保鸡丁” 抽象工厂&#xff1a;“…...

python打卡day49

知识点回顾&#xff1a; 通道注意力模块复习空间注意力模块CBAM的定义 作业&#xff1a;尝试对今天的模型检查参数数目&#xff0c;并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...

<6>-MySQL表的增删查改

目录 一&#xff0c;create&#xff08;创建表&#xff09; 二&#xff0c;retrieve&#xff08;查询表&#xff09; 1&#xff0c;select列 2&#xff0c;where条件 三&#xff0c;update&#xff08;更新表&#xff09; 四&#xff0c;delete&#xff08;删除表&#xf…...

模型参数、模型存储精度、参数与显存

模型参数量衡量单位 M&#xff1a;百万&#xff08;Million&#xff09; B&#xff1a;十亿&#xff08;Billion&#xff09; 1 B 1000 M 1B 1000M 1B1000M 参数存储精度 模型参数是固定的&#xff0c;但是一个参数所表示多少字节不一定&#xff0c;需要看这个参数以什么…...

Linux相关概念和易错知识点(42)(TCP的连接管理、可靠性、面临复杂网络的处理)

目录 1.TCP的连接管理机制&#xff08;1&#xff09;三次握手①握手过程②对握手过程的理解 &#xff08;2&#xff09;四次挥手&#xff08;3&#xff09;握手和挥手的触发&#xff08;4&#xff09;状态切换①挥手过程中状态的切换②握手过程中状态的切换 2.TCP的可靠性&…...

EtherNet/IP转DeviceNet协议网关详解

一&#xff0c;设备主要功能 疆鸿智能JH-DVN-EIP本产品是自主研发的一款EtherNet/IP从站功能的通讯网关。该产品主要功能是连接DeviceNet总线和EtherNet/IP网络&#xff0c;本网关连接到EtherNet/IP总线中做为从站使用&#xff0c;连接到DeviceNet总线中做为从站使用。 在自动…...

NFT模式:数字资产确权与链游经济系统构建

NFT模式&#xff1a;数字资产确权与链游经济系统构建 ——从技术架构到可持续生态的范式革命 一、确权技术革新&#xff1a;构建可信数字资产基石 1. 区块链底层架构的进化 跨链互操作协议&#xff1a;基于LayerZero协议实现以太坊、Solana等公链资产互通&#xff0c;通过零知…...

聊一聊接口测试的意义有哪些?

目录 一、隔离性 & 早期测试 二、保障系统集成质量 三、验证业务逻辑的核心层 四、提升测试效率与覆盖度 五、系统稳定性的守护者 六、驱动团队协作与契约管理 七、性能与扩展性的前置评估 八、持续交付的核心支撑 接口测试的意义可以从四个维度展开&#xff0c;首…...

Redis数据倾斜问题解决

Redis 数据倾斜问题解析与解决方案 什么是 Redis 数据倾斜 Redis 数据倾斜指的是在 Redis 集群中&#xff0c;部分节点存储的数据量或访问量远高于其他节点&#xff0c;导致这些节点负载过高&#xff0c;影响整体性能。 数据倾斜的主要表现 部分节点内存使用率远高于其他节…...

.Net Framework 4/C# 关键字(非常用,持续更新...)

一、is 关键字 is 关键字用于检查对象是否于给定类型兼容,如果兼容将返回 true,如果不兼容则返回 false,在进行类型转换前,可以先使用 is 关键字判断对象是否与指定类型兼容,如果兼容才进行转换,这样的转换是安全的。 例如有:首先创建一个字符串对象,然后将字符串对象隐…...

使用 SymPy 进行向量和矩阵的高级操作

在科学计算和工程领域&#xff0c;向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能&#xff0c;能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作&#xff0c;并通过具体…...