【详细讲解语言模型的原理、实战与评估】

🌈个人主页:程序员不想敲代码啊🌈
🏆CSDN优质创作者,CSDN实力新星,CSDN博客专家🏆
👍点赞⭐评论⭐收藏
🤝希望本文对您有所裨益,如有不足之处,欢迎在评论区提出指正,让我们共同学习、交流进步!
语言模型的原理、实战与评估
- 👉前言
- 👉原理
- 👉实战
- 👉评估
👉前言
语言模型的原理、实战与评估是自然语言处理(Natural Language Processing, NLP)领域的基础内容。以下是对这些概念的简要概述。
👉原理
语言模型(Language Model, LM)主要是用来计算一个序列的概率,即文章或句子出现的可能性。它是通过学习大量的文本数据来预测下一个单词或字符的模型。其基本原理可以从以下几个方面来理解:
-
🌊统计语言模型:最早的语言模型,基于n-gram(n个连续单词的序列)统计出现的频率来计算句子的概率。其局限性在于无法很好地处理长距离的依赖。
-
🌊神经语言模型:利用神经网络来捕获单词之间的关系,并可以处理长距离的依赖。例如RNN(Recurrent Neural Network)和它的变体LSTM(Long Short-Term Memory)和GRU(Gated Recurrent Unit)。
-
🌊变换器语言模型(Transformer Language Model):Transformer模型采用自注意力机制(self-attention)来处理序列数据,不再依赖递归结构,能处理非常长的依赖关系,这是当前最流行和高效的模型之一,比如GPT(Generative Pretrained Transformer)系列。
👉实战
在实战中,语言模型的训练通常包括如下步骤:
-
✨数据采集与预处理:收集大规模的文本数据,并进行清洗、标注(如果需要)和分词等预处理工作。
-
✨模型设计:选择或设计适合任务的语言模型架构,比如RNN、LSTM、GRU、Transformer。
-
✨训练与微调:使用大量的文本数据来训练模型。采用诸如交叉熵损失(Cross Entropy Loss)这样的损失函数,以及优化算法(如Adam)来优化模型参数。在特定任务上,通过微调(Fine-tuning)的方式使模型适应具体应用。
-
✨部署与应用:将训练好的模型部署到实际的应用中,如聊天机器人、文本生成、文本理解和翻译等。
👉评估
评估是检查语言模型性能的重要环节,通过以下指标来衡量:
-
🔮困惑度(Perplexity):是度量模型预测样本的能力的指标,困惑度越低,模型的性能越好。
-
🔮精确率(Precision)、召回率(Recall)和F1分数:这些指标多用于评估语言模型在文本生成、分类或信息提取等任务中的性能。
-
🔮BLEU分数(Bilingual Evaluation Understudy Score):主要用于评估机器翻译的质量,通过与一组参考翻译进行比较来工作。
-
🔮人工评估:自动评估指标可能无法完整反映模型的效果,尤其是在涉及到语义理解和生成的质量时,因此在一些情况下还需要专业人员进行人工评估。
在实际的应用中,通常会结合多种评估指标来全面评价一个语言模型的性能。不同的任务可能会更侧重于不同的评估指标。此外,语言模型还需要被评估其在现实世界应用中的效用、稳定性以及是否存在偏差等问题。
相关文章:
【详细讲解语言模型的原理、实战与评估】
🌈个人主页:程序员不想敲代码啊🌈 🏆CSDN优质创作者,CSDN实力新星,CSDN博客专家🏆 👍点赞⭐评论⭐收藏 🤝希望本文对您有所裨益,如有不足之处,欢迎在评论区提…...
Predict the Next “X” ,第四范式发布先知AIOS 5.0
今天,第四范式发布了先知AIOS 5.0,一款全新的行业大模型平台。 大语言模型的原理是根据历史单词去不断预测下一个单词,换一句常见的话:Predict the Next “Word”。 当前对于行业大模型的普遍认知就是沿用这种逻辑,用大…...
PCL使用4PCS配准
一、代码 C++ #include <pcl/registration/ia_fpcs.h> // 4PCS算法 #include <pcl/point_types.h> #include <pcl/point_cloud.h> #include <pcl/io/pcd_io.h> #include <pcl/io/ply_io.h> #include <boost/thread/thread.hpp> #include…...
【六 (2)机器学习-机器学习建模步骤/kaggle房价回归实战】
一、确定问题和目标: 1、业务需求分析: 与业务团队或相关利益方进行深入沟通,了解他们的需求和期望。 分析业务流程,找出可能的瓶颈、机会或挑战。 思考机器学习如何帮助解决这些问题或实现业务目标。 2、问题定义:…...
vue源码解析——vue如何将template转换为render函数
Vue 将模板(template)转换为渲染函数(render function)是 Vue 编译器的核心功能,它是 Vue 实现响应式和虚拟 DOM 的关键步骤。在 Vue 中,模板(template)是开发者编写的类似 HTML 的代…...
深入理解zookeeper
如果是zookeeper的初学者,可以看: zookeeper快速入门(合集)-CSDN博客 如果想要深入理解zookeeper,并在面试中取得更好的表现,可以看下面的文章,都是偏面试向的角度写的。 三分钟明白zookeeper…...
【漏洞复现】WordPress Plugin LearnDash LMS 敏感信息暴漏
漏洞描述 WordPress和WordPress plugin都是WordPress基金会的产品。WordPress是一套使用PHP语言开发的博客平台。该平台支持在PHP和MySQL的服务器上架设个人博客网站。WordPress plugin是一个应用插件。 WordPress Plugin LearnDash LMS 4.10.2及之前版本存在安全漏洞&#x…...
phpmyadmin页面getshell
0x00 前言 来到phpmyadmin页面后如何getshell呢?下面介绍两种方法 0x01 select into outfile直接写入 1、利用条件 对web目录需要有写权限能够使用单引号(root) 知道网站绝对路径(phpinfo/php探针/通过报错等) secure_file_priv没有具体值 2、查看secure_file…...
题目:学习static定义静态变量的用法
题目:学习static定义静态变量的用法 There is no nutrition in the blog content. After reading it, you will not only suffer from malnutrition, but also impotence. The blog content is all parallel goods. Those who are worried about being cheate…...
【C++】编程规范之函数规则
对所有函数入参进行合法性检查 在编写函数时,应该始终对所有传入的参数进行合法性检查,以防止出现意外的错误或异常情况。这包括但不限于检查指针是否为空、整数是否在有效范围内、数组是否越界等等。通过对参数进行严格的合法性检查,可以避免…...
HTML常用的图片标签和超链接标签
目录 一.常用的图片标签和超链接标签: 1.超链接标签: 前言: 超链接的使用: target属性: 1)鼠标样式: 2)颜色及下划线: 总结: 2.图片标签: 前言: img的使用: 设置图片: 1.设置宽度和高度: 2.HTM…...
浏览器工作原理与实践--WebAPI:XMLHttpRequest是怎么实现的
在上一篇文章中我们介绍了setTimeout是如何结合渲染进程的循环系统工作的,那本篇文章我们就继续介绍另外一种类型的WebAPI——XMLHttpRequest。 自从网页中引入了JavaScript,我们就可以操作DOM树中任意一个节点,例如隐藏/显示节点、改变颜色、…...
TCP网络协议栈和Posix网络部分API总结
文章目录 Posix网络部分API综述TCP协议栈通信过程TCP三次握手和四次挥手(看下图)三次握手常见问题?为什么是三次握手而不是两次?三次握手和哪些函数有关?TCP的生命周期是从什么时候开始的? 四次挥手通信状态…...
《解释器模式(极简c++)》
本文章属于专栏- 概述 - 《设计模式(极简c版)》-CSDN博客 模式说明 方案: 对每个data建立一个单点解释器对象X,dataA和dataB之间的关系,建立一个关系解释器对象Y,这里的Y处理的是X1和X2。这样,…...
c#仿ppt案例
画曲线 namespace ppt2024 {public partial class Form1 : Form{public Form1(){InitializeComponent();}//存放所有点的位置信息List<Point> lstPosition new List<Point>();//控制开始画的时机bool isDrawing false;//鼠标点击开始画private void Form1_MouseD…...
10.图像高斯滤波的原理与FPGA实现思路
1.概念 高斯分布 图像滤波之高斯滤波介绍 图像处理算法|高斯滤波 高斯滤波(Gaussian filter)包含很多种,包括低通、高通、带通等,在图像上说的高斯滤波通常是指的高斯模糊(Gaussian Blur),是一种高斯低通滤波。通常这个算法也可以用来模…...
WebGIS 地铁交通线网 | 图扑数字孪生
数字孪生技术在地铁线网的管理和运维中的应用是一个前沿且迅速发展的领域。随着物联网、大数据、云计算以及人工智能技术的发展,地铁线网数字孪生在智能交通和智慧城市建设中的作用日益凸显。 图扑软件基于 HTML5 的 2D、3D 图形渲染引擎,结合 GIS 地图…...
Docker 哲学 - push 本机镜像 到 dockerhub
注意事项: 1、 登录 docker 账号 docker login 2、docker images 查看本地镜像 3、注意的是 push镜像时 镜像的tag 需要与 dockerhub的用户名保持一致 eg:本地镜像 express:1 直接 docker push express:1 无法成功 原因docker不能识别 push到哪里 …...
大数据学习第十二天(hadoop概念)
1、服务器之间数据文件传递 1)服务器之间传递数据,依赖ssh协议 2)http协议是web网站之间的通讯协议,用户可已通过http网址访问到对应网站数据 3)ssh协议是服务器之间,或windos和服务器之间传递的数据的协议…...
管理科学笔记
1.线性规划 画出区域,代入点计算最大最小值 2.最小生成树 a.断线法,从大的开始断 b.选择法,从小的开始选 3.匈牙利法 维度数量直线覆盖所有的0 4.一直选最当前路线最短路径 5.线性规划 6.决策论...
Appium+python自动化(十六)- ADB命令
简介 Android 调试桥(adb)是多种用途的工具,该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具,其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利,如安装和调试…...
边缘计算医疗风险自查APP开发方案
核心目标:在便携设备(智能手表/家用检测仪)部署轻量化疾病预测模型,实现低延迟、隐私安全的实时健康风险评估。 一、技术架构设计 #mermaid-svg-iuNaeeLK2YoFKfao {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg…...
Day131 | 灵神 | 回溯算法 | 子集型 子集
Day131 | 灵神 | 回溯算法 | 子集型 子集 78.子集 78. 子集 - 力扣(LeetCode) 思路: 笔者写过很多次这道题了,不想写题解了,大家看灵神讲解吧 回溯算法套路①子集型回溯【基础算法精讲 14】_哔哩哔哩_bilibili 完…...
mongodb源码分析session执行handleRequest命令find过程
mongo/transport/service_state_machine.cpp已经分析startSession创建ASIOSession过程,并且验证connection是否超过限制ASIOSession和connection是循环接受客户端命令,把数据流转换成Message,状态转变流程是:State::Created 》 St…...
【大模型RAG】Docker 一键部署 Milvus 完整攻略
本文概要 Milvus 2.5 Stand-alone 版可通过 Docker 在几分钟内完成安装;只需暴露 19530(gRPC)与 9091(HTTP/WebUI)两个端口,即可让本地电脑通过 PyMilvus 或浏览器访问远程 Linux 服务器上的 Milvus。下面…...
连锁超市冷库节能解决方案:如何实现超市降本增效
在连锁超市冷库运营中,高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术,实现年省电费15%-60%,且不改动原有装备、安装快捷、…...
Nginx server_name 配置说明
Nginx 是一个高性能的反向代理和负载均衡服务器,其核心配置之一是 server 块中的 server_name 指令。server_name 决定了 Nginx 如何根据客户端请求的 Host 头匹配对应的虚拟主机(Virtual Host)。 1. 简介 Nginx 使用 server_name 指令来确定…...
C++中string流知识详解和示例
一、概览与类体系 C 提供三种基于内存字符串的流,定义在 <sstream> 中: std::istringstream:输入流,从已有字符串中读取并解析。std::ostringstream:输出流,向内部缓冲区写入内容,最终取…...
c#开发AI模型对话
AI模型 前面已经介绍了一般AI模型本地部署,直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型,但是目前国内可能使用不多,至少实践例子很少看见。开发训练模型就不介绍了&am…...
GC1808高性能24位立体声音频ADC芯片解析
1. 芯片概述 GC1808是一款24位立体声音频模数转换器(ADC),支持8kHz~96kHz采样率,集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器,适用于高保真音频采集场景。 2. 核心特性 高精度:24位分辨率,…...
