计算机视觉之三维重建(6)---多视图几何(上)
文章目录
- 一、运动恢复结构问题(SfM)
- 二、欧式结构恢复
- 2.1 概述
- 2.2 求解
- 2.3 欧式结构恢复歧义
- 三、仿射结构恢复
- 3.1 概述
- 3.2 因式分解法
- 3.3 总结
- 3.4 仿射结构恢复歧义
一、运动恢复结构问题(SfM)
1. 运动恢复结构问题:通过三维场景的多张图像,恢复出该场景的三维结构信息以及每张图片对应的摄像机参数。

2. 运动恢复问题建模表述:已知 n n n 个世界坐标点在 m m m 张图像中的对应点的像素坐标 x i j x_{ij} xij,计算出 m m m 个摄像机的投影矩阵 M i M_i Mi 和 n n n 个三维点 X j X_j Xj 的坐标。下图中 M = K [ R , T ] M=K[R,T] M=K[R,T]。

二、欧式结构恢复
2.1 概述
1. 欧式结构恢复问题:摄像机内参数已知,外参数未知情况。
2. 对于欧式结构恢复问题,已知摄像机内参数,根据投影矩阵的计算公式可知 x i j = M i X j = K i [ R i , T i ] X j x_{ij}=M_iX_j=K_i[R_i,T_i]X_j xij=MiXj=Ki[Ri,Ti]Xj。那么求解投影矩阵 M M M 只需要求解外参数 [ R , T ] [R,T] [R,T]。

2.2 求解
1. 对于二视图的欧式结构恢复问题,如果把世界坐标系放在第一个坐标系下面,那摄像机 1 1 1 的外参数为 [ I , 0 ] [I,0] [I,0],而摄像机 2 2 2 的外参数 [ R , T ] [R,T] [R,T] 却是未知的。

2. 求解步骤:
(1)求解基础矩阵 F F F(归一化八点法)
(2)求解本质矩阵 E = K 2 T F K 1 E=K_2^TFK_1 E=K2TFK1
(3)分解本质矩阵 E → R , T E \rightarrow R,T E→R,T
(4)三角化(求解世界坐标系下的3D坐标)

3. 上面步骤中除了分解本质矩阵 E E E 外,其他都在之前文章中提到过。分解本质矩阵 E E E 在编程下的代码不难,但是推导过程极其复杂,博主在这里就不叙述了。
import numpy as np # 假设你已经有了一个本质矩阵E
E = np.array([[...], [...], [...]]) # 用你的本质矩阵替换这里的占位符 # 对E进行奇异值分解
U, S, Vt = np.linalg.svd(E) # 根据SVD分解的结果恢复旋转矩阵R和平移向量t
W = np.array([[0, -1, 0], [1, 0, 0], [0, 0, 1]])
R1 = U @ W @ Vt
R2 = U @ W.T @ Vt # 由于t的方向是不确定的,我们通常选择使t的最后一个分量为正的那个解
t1 = U[:, 2]
t2 = -U[:, 2] # 选择合适的R和t组合
if np.linalg.det(R1) * np.linalg.det(np.eye(3) - R1) < 0: R, t = R2, t2
else: R, t = R1, t1 # 现在你有了旋转矩阵R和平移向量t
print("Rotation matrix R:")
print(R)
print("Translation vector t:")
print(t)
2.3 欧式结构恢复歧义
1. 在没有先验信息的情况下,我们求解出来的解跟真实解是存在一个相似变换关系(旋转、平移、缩放)。
2. 度量重构:恢复的场景与真实场景之间仅存在相似变换的重构。如果欧式结构恢复后能达到这种重构的话,那就可以说的上恢复效果是很不错了。


三、仿射结构恢复
3.1 概述
1. 仿射结构恢复问题:摄像机为仿射相机,内外参数均未知。 一般来说仿射相机代表为弱透视投影摄像机。
2. 下面图中所有坐标使用欧式坐标,对于仿射变换而言 z z z 轴的 m 3 X = 1 m_3X=1 m3X=1,所以经过等式变换世界坐标的欧式坐标与像平面欧式坐标关系为 x E = A X E + b x^E=AX^E+b xE=AXE+b。其中 A 2 ∗ 3 , b 2 ∗ 1 A_{2∗3},b_{2∗1} A2∗3,b2∗1。

3. 仿射结构恢复问题可以建模为:已知 n n n 个三维点 X j X_j Xj 在 m m m 张图像中的对应点的像素坐标为 x i j x_{ij} xij,且 x i j = A i X j + b i x_{ij}=A_iX_j+b_i xij=AiXj+bi,其中第 i i i 张图片对应的仿射相机的投影矩阵为 M i M_i Mi。求解 n n n 个三维点 X j X_j Xj 的坐标以及 m m m 个仿射相机的投影矩阵中的 A i A_i Ai, b i b_i bi ( i = 1 , 2 , . . . , m i=1,2,...,m i=1,2,...,m)。

3.2 因式分解法
1. 数据中心化:对于所有像平面点和世界坐标的三维点,分别减去像平面点和三维点的质心,建立新的关系,可知 x ^ i j = A i X ^ j \widehat{x}_{ij}=A_i\widehat{X}_j x ij=AiX j。其中 x ^ i j = x i j − x ˉ i j \widehat{x}_{ij}=x_{ij}-\bar{x}_{ij} x ij=xij−xˉij, X ^ j = X j − X ˉ j \widehat{X}_j=X_j-\bar{X}_j X j=Xj−Xˉj。通过数据中心化消掉了 b b b 的影响。
2. 如果3D点的质心=世界坐标系的中心,那么减去的均值为 0 0 0,所以 x ^ i j = A i X j \widehat{x}_{ij}=A_i{X}_j x ij=AiXj。

3. 矩阵形式如下所示。接下来我们要将 D 2 m ∗ n D_{2m*n} D2m∗n 分解为 M 2 m ∗ 3 M_{2m*3} M2m∗3 和 S 3 ∗ n S_{3*n} S3∗n,即因式分解。


4. 由于 M M M 和 S S S 的秩为 3 3 3,所以 D D D 的秩为 3 3 3,我们对 D 2 m ∗ n D_{2m*n} D2m∗n 矩阵进行奇异值分解。可以得到 D 2 m ∗ n = U 2 m ∗ 3 × W 3 ∗ 3 × V 3 ∗ n D_{2m*n}=U_{2m*3} \times W_{3*3} \times V_{3*n} D2m∗n=U2m∗3×W3∗3×V3∗n。


3.3 总结

3.4 仿射结构恢复歧义
1. 仿射结构恢复歧义:投影矩阵存在一个可逆 3 ∗ 3 3*3 3∗3 矩阵的变换,也就是差了一个仿射变换的矩阵系数。对于歧义我们需要引入其他约束来解决歧义。

2. 另外对于给定 m m m 个相机, n n n 个 3 3 3 维点情况下,我们将有 2 m n 2mn 2mn 个等式, 8 m + 3 n − 8 8m+3n-8 8m+3n−8 个未知量。

相关文章:
计算机视觉之三维重建(6)---多视图几何(上)
文章目录 一、运动恢复结构问题(SfM)二、欧式结构恢复2.1 概述2.2 求解2.3 欧式结构恢复歧义 三、仿射结构恢复3.1 概述3.2 因式分解法3.3 总结3.4 仿射结构恢复歧义 一、运动恢复结构问题(SfM) 1. 运动恢复结构问题:通…...
蓝桥杯:全球变暖(python,BFS,DFS)(栈溢出的处理办法)
图论的经典题型,深度优先搜索和广度优先搜索都可以,但是本题推荐使用广度优先搜索(类似的题最好都用广度优先搜索),因为使用深度优先搜索会爆栈(栈溢出)。本篇博客两种方法都进行讲解࿰…...
Qt C++ | Qt 元对象系统、信号和槽及事件(第一集)
01 元对象系统 一、元对象系统基本概念 1、Qt 的元对象系统提供的功能有:对象间通信的信号和槽机制、运行时类型信息和动态属性系统等。 2、元对象系统是 Qt 对原有的 C++进行的一些扩展,主要是为实现信号和槽机制而引入的, 信号和槽机制是 Qt 的核心特征。 3、要使用元…...
Python 抽象类
在Python的抽象基类(ABC)中,方法并不是必须全部是抽象方法。抽象基类可以同时包含抽象方法和具体方法。抽象类中可以有抽象方法也可以定义具体方法 具体来说: 抽象方法: 使用abc.abstractmethod装饰器标记的方法是抽象方法。抽象方法没有方法体,只有方法签名。抽象方法必须在具…...
达梦数据库自动备份(全库)+还原(全库) 控制台
一 前提 1.安装达梦数据库DB8(请参照以前文章) 我的数据库安装目录是 /app/dmDB8 2.已创建实例 (请参照上一篇文章) 二 准备测试数据 三 自动备份步骤 1.开启归档模式 开启DM管理工具管理控制台 弹不出来工具的 输入命令 xhost 第一步 将服务器转换为配置状态 右键-&g…...
android AndroidAutoSize 取消第三方库适配问题(两个步骤)
比如第三方库的Activity是:PictureSelectorSupporterActivity、PictureSelectorTransparentActivity、CropImageActivity 1.在自定义Application 的 onCreate 方法设置: Overridepublic void onCreate() {super.onCreate();this.mAppthis;registerActi…...
【Java 多线程】从源码出发,剖析Threadlocal的数据结构
文章目录 exampleset(T value)createMap(t, value);set(ThreadLocal<?> key, Object value)ThreadLocalMap和Thread的关系 全貌 ThreadLocal是个很重要的多线程类,里面数据结构的设计很有意思,很巧妙。但是我们平时使用它的时候常常容易对它的使用…...
Sy6 编辑器vi的应用(+shell脚本3例子)
实验环境: 宿主机为win11,网络:10.255.50.5 6389 WSL2 ubuntu 目标机的OS:Ubuntu 内核、版本如下: linuxpeggy0223:/$ uname -r 5.15.146.1-microsoft-standard-WSL2 linuxpeggy0223:/$ cat /proc/version Linux vers…...
把标注数据导入到知识图谱
文章目录 简介数据导入Doccano标注数据,导入到Neo4j寻求帮助 简介 团队成员使用 Doccano 标注了一些数据,包括 命名实体识别、关系和文本分类 的标注的数据; 工作步骤如下: 首先将标注数据导入到Doccano,查看一下标注…...
【前端基础】什么是类数组对象,类数组对象转换成数组的方法
类数组对象(array-like object)是指在 JavaScript 中具有类似数组的特征但不是真正的数组的对象。这些对象具有类似数组的特性,例如有一个 length 属性和通过索引访问元素的能力,但它们不具备数组对象的所有方法和特性。 什么是类…...
Python快速入门系列-8(Python数据分析与可视化)
第八章:Python数据分析与可视化 8.1 数据处理与清洗8.1.1 数据加载与查看8.1.2 数据清洗与处理8.1.3 数据转换与整理8.2 数据可视化工具介绍8.2.1 Matplotlib8.2.2 Seaborn8.2.3 Plotly8.3 数据挖掘与机器学习简介8.3.1 Scikit-learn8.3.2 TensorFlow总结在本章中,我们将探讨…...
双非硕转测试之Java学习笔记(一):集合
Java学习-----集合 简单概括单列集合--collectionlist接口:vector类:LinkedList类:set接口:HasSet类:LinkedHashSet类: 双列集合--MapMap接口:HashMap类:HashTable类:Pro…...
zabbix源码安装
目录 一.安装php和nginx客户端环境 二.修改php配置 三.修改nginx配置文件 四.下载并编译zabbix 五.创建zabbix需要的用户及组 六.安装编译需要的依赖 七.配置zabbix文件 八.数据库配置 九.配置zabbix 十.web界面部署 十一.遇到无法创建配置文件 十二.登录zabbix 前…...
计算机视觉之三维重建(5)---双目立体视觉
文章目录 一、平行视图1.1 示意图1.2 平行视图的基础矩阵1.3 平行视图的极几何1.4 平行视图的三角测量 二、图像校正三、对应点问题3.1 相关匹配法3.2 归一化相关匹配法3.3 窗口问题3.4 相关法存在的问题3.5 约束问题 一、平行视图 1.1 示意图 如下图即是一个平行视图。特点&a…...
计算机网络-TCP/IP 网络模型
TCP/IP网络模型各层的详细描述: 应用层:应用层为应用程序提供数据传输的服务,负责各种不同应用之间的协议。主要协议包括: HTTP:超文本传输协议,用于从web服务器传输超文本到本地浏览器的传送协议。FTP&…...
算法训练营第29天|LeetCode 491.递增子序列 46.全排列 47.全排列Ⅱ
LeetCode 491.递增子序列 题目链接: LeetCode 491.递增子序列 解题思路: 用哈希集合进行去重,同一树层不能取重复元素。 代码: class Solution { public:vector<vector<int>>result;vector<int>path;void…...
Ubuntu服务器搭建 - 环境篇
Ubuntu服务器搭建 - 环境篇 基于腾讯云服务器 - Ubuntu 20.04 LTS 一、安装 - MySQL 1.1 概述 MySQL安装方式有三种: 1. 使用Ubuntu 包管理工具 apt安装 2. 使用MySQL官方APT存储库安装 3. 使用MySQL官方二进制发行版安装 1.2 安装 MySQL 使用MySQL官方APT存储库安装 $ wget…...
深度学习基础模型之Mamba
Mamba模型简介 问题:许多亚二次时间架构(运行时间复杂度低于O(n^2),但高于O(n)的情况)(例如线性注意力、门控卷积和循环模型以及结构化状态空间模型(SSM))已被开发出来,以解决 Transformer 在长…...
Topaz Video AI for Mac v5.0.0激活版 视频画质增强软件
Topaz Video AI for Mac是一款功能强大的视频处理软件,专为Mac用户设计,旨在通过人工智能技术为视频编辑和增强提供卓越的功能。这款软件利用先进的算法和深度学习技术,能够自动识别和分析视频中的各个元素,并进行智能修复和增强&…...
解决WordPress文章的段落首行自动空两格的问题
写文章时,段落首行都会空两格,可是WordPress自带的编辑器却没有考虑到这一点,导致发布的文章首行都是顶格的,看起来很不习惯。 我们通常的解决方法都是在发布文章时把编辑器切换到“文本”模式,然后再在首行手动键入两…...
Lombok 的 @Data 注解失效,未生成 getter/setter 方法引发的HTTP 406 错误
HTTP 状态码 406 (Not Acceptable) 和 500 (Internal Server Error) 是两类完全不同的错误,它们的含义、原因和解决方法都有显著区别。以下是详细对比: 1. HTTP 406 (Not Acceptable) 含义: 客户端请求的内容类型与服务器支持的内容类型不匹…...
ES6从入门到精通:前言
ES6简介 ES6(ECMAScript 2015)是JavaScript语言的重大更新,引入了许多新特性,包括语法糖、新数据类型、模块化支持等,显著提升了开发效率和代码可维护性。 核心知识点概览 变量声明 let 和 const 取代 var…...
条件运算符
C中的三目运算符(也称条件运算符,英文:ternary operator)是一种简洁的条件选择语句,语法如下: 条件表达式 ? 表达式1 : 表达式2• 如果“条件表达式”为true,则整个表达式的结果为“表达式1”…...
html-<abbr> 缩写或首字母缩略词
定义与作用 <abbr> 标签用于表示缩写或首字母缩略词,它可以帮助用户更好地理解缩写的含义,尤其是对于那些不熟悉该缩写的用户。 title 属性的内容提供了缩写的详细说明。当用户将鼠标悬停在缩写上时,会显示一个提示框。 示例&#x…...
免费PDF转图片工具
免费PDF转图片工具 一款简单易用的PDF转图片工具,可以将PDF文件快速转换为高质量PNG图片。无需安装复杂的软件,也不需要在线上传文件,保护您的隐私。 工具截图 主要特点 🚀 快速转换:本地转换,无需等待上…...
基于Springboot+Vue的办公管理系统
角色: 管理员、员工 技术: 后端: SpringBoot, Vue2, MySQL, Mybatis-Plus 前端: Vue2, Element-UI, Axios, Echarts, Vue-Router 核心功能: 该办公管理系统是一个综合性的企业内部管理平台,旨在提升企业运营效率和员工管理水…...
Golang——9、反射和文件操作
反射和文件操作 1、反射1.1、reflect.TypeOf()获取任意值的类型对象1.2、reflect.ValueOf()1.3、结构体反射 2、文件操作2.1、os.Open()打开文件2.2、方式一:使用Read()读取文件2.3、方式二:bufio读取文件2.4、方式三:os.ReadFile读取2.5、写…...
C语言中提供的第三方库之哈希表实现
一. 简介 前面一篇文章简单学习了C语言中第三方库(uthash库)提供对哈希表的操作,文章如下: C语言中提供的第三方库uthash常用接口-CSDN博客 本文简单学习一下第三方库 uthash库对哈希表的操作。 二. uthash库哈希表操作示例 u…...
华为OD机试-最短木板长度-二分法(A卷,100分)
此题是一个最大化最小值的典型例题, 因为搜索范围是有界的,上界最大木板长度补充的全部木料长度,下界最小木板长度; 即left0,right10^6; 我们可以设置一个候选值x(mid),将木板的长度全部都补充到x,如果成功…...
永磁同步电机无速度算法--基于卡尔曼滤波器的滑模观测器
一、原理介绍 传统滑模观测器采用如下结构: 传统SMO中LPF会带来相位延迟和幅值衰减,并且需要额外的相位补偿。 采用扩展卡尔曼滤波器代替常用低通滤波器(LPF),可以去除高次谐波,并且不用相位补偿就可以获得一个误差较小的转子位…...
