VGA显示器驱动设计与验证
1.原理
场同步信号的单位是像素点
场同步信号的单位是一行
@60的含义是每秒钟刷新60帧图像
全0表示黑色
2.1 CLK_gen.v
module CLK_gen(input wire sys_clk ,input wire sys_rst_n ,output wire CLK_out ,output wire locked
);parameter STATE=1'b0;
reg [1:0] cnt;
reg flag_clk;assign locked=STATE;
assign CLK_out=flag_clk;always@(posedge sys_clk or negedge sys_rst_n)if(sys_rst_n==1'b0)cnt<=2'b0;else if(cnt==2'd1)cnt<=2'b0;else cnt<=cnt+1'b1;always@(posedge sys_clk or negedge sys_rst_n)if(sys_rst_n==1'b0)flag_clk<=1'b0;else if(cnt==2'd1)flag_clk<=1'b1;elseflag_clk<=1'b0;endmodule
2.2 Vga_ctrl.v
module Vga_ctrl(input wire Vga_clk ,input wire sys_rst_n ,input wire [15:0] Pix_data ,output wire [9:0] Pix_x ,output wire [9:0] Pix_y , output wire [15:0] rgb ,output wire hsync ,output wire vsync
);parameter H_SYNC=10'd96 , H_BACK=10'd40 ,H_LEFT=10'd8 ,H_VALID=10'd640 ,H_RIGHT=10'd8 ,H_FRONT=10'd8 ,H_TOTAL=10'd800 ;parameter V_SYNC=10'd2 ,V_BACK=10'd25 ,V_TOP=10'd8 ,V_VALID=10'd480 ,V_BOTTOM=10'd8 ,V_FRONT=10'd2 ,V_TOTAL=10'd525;reg [9:0] Cnt_h;
reg [9:0] Cnt_v;
wire Rgb_valid;
wire pix_data_req;assign Rgb_valid=(Cnt_h>=H_SYNC+H_BACK+H_LEFT&&Cnt_h<H_SYNC+H_BACK+H_LEFT+H_VALID&&Cnt_v>=V_SYNC+V_BACK+V_TOP&&Cnt_v<V_SYNC+V_BACK+V_TOP+V_VALID)?1'b1:1'b0;//这里为什么不减1呢,画个简单的图就知道了//因为前面的时间要满足H_SYNC+H_BACK+H_LEFT,//有效信号是从他们之和加1开始计数的//比如Cnt_h=10,就是计数了11个,//而H_SYNC+H_BACK+H_LEFT=1+2+3=5//所以前面要计满5个,也就是计数到4,10-5=5刚好是大于等于5开始信号有效assign pix_data_req=(Cnt_h>=H_SYNC+H_BACK+H_LEFT-1'b1&&Cnt_h<H_SYNC+H_BACK+H_LEFT+H_VALID-1'b1&&Cnt_v>=V_SYNC+V_BACK+V_TOP&&Cnt_v<V_SYNC+V_BACK+V_TOP+V_VALID)?1'b1:1'b0;assign Pix_x=pix_data_req?Cnt_h-(H_SYNC+H_BACK+H_LEFT-1'b1):10'h3ff;
assign Pix_y=pix_data_req?Cnt_v-(V_SYNC+V_BACK+V_TOP):10'h3ff;
//assign Pix_x=Rgb_valid?Cnt_h-(H_SYNC+H_BACK+H_LEFT):10'd0;
//assign Pix_y=Rgb_valid?Cnt_v-(V_SYNC+V_BACK+V_TOP):10'd0;
//这里也没有减1为什么呢
//同理Cnt_h是从0开始计数的,假如Cnt_h=10
//H_SYNC+H_BACK+H_LEFT=1+2+3=5
//那么此时的行坐标就等于10-5=5,因为前面的0-4是5个周期
//如果此时在H_SYNC+H_BACK+H_LEFT的基础上减1的话
//那么10-4=6,前面就是0-5等于6个时钟周期了,时序不符合assign hsync=(Cnt_h<=H_SYNC-1'b1)?1'b1:1'b0;
assign vsync=(Cnt_v<=V_SYNC-1'b1)?1'b1:1'b0;
//为什么这里要减呢,因为Cnt_h是从0开始计数的,假如说计数到了10,就是0-11
//假如行同步信号是2个时钟周期,那么有效的就是第3个时钟周期,也就是计数到1.
//举个例子就能看出是不是需要减了assign rgb=(Rgb_valid==1'b1)?Pix_data:16'd0;always@(posedge Vga_clk or negedge sys_rst_n )if(sys_rst_n==1'b0)Cnt_h<=10'd0;else if(Cnt_h==H_TOTAL-1'b1)Cnt_h<=10'd0;elseCnt_h<=Cnt_h+1'b1;always@(posedge Vga_clk or negedge sys_rst_n )if(sys_rst_n==1'b0)Cnt_v<=10'd0;else if((Cnt_v==V_TOTAL-1'b1)&&(Cnt_h==H_TOTAL-1'b1))Cnt_v<=10'd0;else if(Cnt_h==H_TOTAL-1'b1)Cnt_v<=Cnt_v+1'b1;elseCnt_v<=Cnt_v;endmodule
2.3 tb_Vga_ctrl.v
module tb_Vga_ctrl();reg sys_clk;
reg sys_rst_n ;
reg[15:0] Pix_data ;wire [9:0] Pix_x ;
wire [9:0] Pix_y ;
wire [15:0]rgb ;
wire hsync ;
wire vsync ;
wire CLK_out ;
wire locked ;
wire rst_n;initial beginsys_clk=1'b1;sys_rst_n<=1'b0;#20sys_rst_n=1'b1;end assign rst_n=(sys_rst_n&&locked);always#10 sys_clk=~sys_clk;always@(posedge CLK_out or negedge rst_n)if(rst_n==1'b0)Pix_data<=16'h0000;else if (Pix_x>=10'd0&&Pix_x<=10'd639&&Pix_y>=10'd0&&Pix_y<=10'd479)Pix_data<=16'hffff;elsePix_data<=16'h0000;defparam CLK_gen_inst.STATE=1'b1; Vga_ctrl Vga_ctrl_inst(.Vga_clk (CLK_out) ,.sys_rst_n (rst_n),.Pix_data (Pix_data),.Pix_x (Pix_x ),.Pix_y (Pix_y ), .rgb (rgb ) ,.hsync (hsync ),.vsync (vsync )
);CLK_gen CLK_gen_inst(.sys_clk (sys_clk ) ,.sys_rst_n (sys_rst_n ),.CLK_out (CLK_out ) ,.locked (locked )
);endmodule
要显示1帧图像,1s是60帧,1帧就是0.0167s,所以等于16.7ms
时钟正确25mhz,锁定信号是拉高的,表示锁定信号在高电平时,时钟的输出有效,因为若锁定信号为0,那么复位信号就一直为0,时钟就起不了作用。
复位信号为0,数据就为0,坐标信号大于等于0且小于一定范围就为全为白色ffff。否则就全为0。
完成一帧
场同步信号也正确。
这里有错。因为有效信号多记了一个时钟周期
因此这里要修改数据有效信号
现在计数正确了
修改时钟换成分频后的信号
还是有问题,当数据有效时,数据仍为0。说明数据滞后数据有效信号一个时钟周期,所以得让数据提前一个时钟周期,解决方法是增加一个数据请求信号,比数据有效信号提前1时钟周期,然后rgb刚好滞后数据请求信号一个时钟周期。就达到了rgb和数据有效信号同步得效果。
末尾没有问题,原因是因为是时序逻辑,修改代码
行可以超前,但是场不用,场超前就是超前一行了,而行超前就是超前一个时钟周期。这里修改是要将pix_x超前一个时钟周期,然后再pi_data滞后一个周期,从而达到同步的效果
行计数器这里也要减1
请求信号确实超前有效信号一个时钟周期
末尾也正确
但是坐标还是不对
这下对了,为什么要让括号里面的信号减1呢?因为pix_data_req比数据有效信号提前了一个时钟周期,如果按照原来的不减1,那么坐标就会变小,提前数据有效信号一个时钟周期,要让坐标不变,就得让计数得值变大,所以减1。
数据和有效信号是同步的
相关文章:

VGA显示器驱动设计与验证
1.原理 场同步信号的单位是像素点 场同步信号的单位是一行 60的含义是每秒钟刷新60帧图像 全0表示黑色 2.1 CLK_gen.v module CLK_gen(input wire sys_clk ,input wire sys_rst_n ,output wire CLK_out ,output wire locked );parameter STATE1b0; reg [1:0] cnt; r…...

jupyter notebook 配置默认文件路径
Jupyter是一种基于Web的交互式计算环境,支持多种编程语言,如Python、R、Julia等。使用Jupyter可以在浏览器中编写和运行代码,同时还可以添加Markdown文本、数学公式、图片等多种元素,非常适合于数据分析、机器学习等领域。 安装 …...

强大缓存清理工具 NetShred X for Mac激活版
NetShred X for Mac是一款专为Mac用户设计的强大缓存清理工具,旨在帮助用户轻松管理和优化系统性能。这款软件拥有直观易用的界面,即使是初次使用的用户也能快速上手。 软件下载:NetShred X for Mac激活版下载 NetShred X能够深入扫描Mac系统…...

在ssh 工具 Linux screen会话中使用鼠标进行上下滚动
经过几次发现 除xshell外, WindTerm finalshell MobaXterm 都是进入会话后,发现其界面无法滚动屏幕向上查看 如果想要在Linux screen会话中使用鼠标进行上下滚动。必须首先进入该screen的回滚(scrollback模式)才能进行上下滚动 第一步ÿ…...

Github2024-04-03 开源项目日报 Top10
根据Github Trendings的统计,今日(2024-04-03统计)共有10个项目上榜。根据开发语言中项目的数量,汇总情况如下: 开发语言项目数量Python项目4TypeScript项目2Jupyter Notebook项目2C++项目1Shell项目1Go项目1非开发语言项目1Rust项目1从零开始构建你喜爱的技术 创建周期:21…...

Linux笔记之制作基于ubuntu20.4的最小OpenGL C++开发docker镜像
Linux笔记之制作基于ubuntu20.4的最小OpenGL C开发docker镜像 —— 2024-04-03 夜 code review! 文章目录 Linux笔记之制作基于ubuntu20.4的最小OpenGL C开发docker镜像1.这里把这本书的例程代码放在了Dockerfile所在的文件夹内以使镜像预装例程代码2.创建Dockerfile3.构建Do…...
企业为什么选择高防服务器?
高防服务器顾名思义就是一种具有高度安全性的服务器,有着很高的防御能力,可以提供更加安全可靠的服务,能够有效地避免分布式拒绝服务攻击和其它的网络安全威胁,以下就是企业选择高防服务器的原因。 高防服务器在硬件安全方面有着很…...

OpenHarmony实战:轻量级系统之配置其他子系统
除上述子系统之外,还有一些必要但是无需进行移植的子系统。如:分布式任务调度子系统、DFX子系统。 这些子系统添加方式比较简单,在“vendor/MyVendorCompany/MyProduct/config.json”文件中进行如下配置即可: {"subsystem&…...
关于VueCli项目中如何加载调试Worker和SharedWorker
安装Webpack插件 VueCli 项目中默认是没有加载 worker 的配置,需要额外安装 webpack 插件来实现,让我们开始安装 worker-loader 插件 # npm npm install worker-loader # pnpm pnpm install worker-loader # yarn yarn add worker-loader配置Webpack插…...

Centos7安装单机版Kafka
下载 链接:https://pan.baidu.com/s/1W8lVEF6Y-xlg6zr3l9QAbg?pwdhbkt 提取码:hbkt 上传到服务器/opt目录 安装 # kafka安装目录为 /opt/kafka cd /opt; mkdir kafka; mv kafka_2.13-2.7.0.tgz ./kafka;cd kafka; #解压 tar -zxvf kafka_2.13-2.7.0…...

基于深度学习的钢材表面缺陷检测系统(网页版+YOLOv8/v7/v6/v5代码+训练数据集)
摘要:本文深入研究了基于YOLOv8/v7/v6/v5的钢材表面缺陷检测系统,核心采用YOLOv8并整合了YOLOv7、YOLOv6、YOLOv5算法,进行性能指标对比;详述了国内外研究现状、数据集处理、算法原理、模型构建与训练代码,及基于Strea…...

计算机网络:数据链路层 - 点对点协议PPP
计算机网络:数据链路层 - 点对点协议PPP PPP协议的帧格式透明传输字节填充法零比特填充法 差错检测循环冗余校验 对于点对点链路,PPP协议是目前使用最广泛的数据链路层协议。比如说,当用户想要接入互联网,就需要通过因特网服务提供…...
Springboot集成token认证
一、引出session问题以及token、鉴权 session都是保存在内存中,认证用户增多,服务端开销明显增大。若是认证的记录保存在某台服务器内存中时,意味着用户的下次请求只能够在该服务器内存中进行认证。CSRF跨站攻击 token的鉴权机制࿱…...

计算机网络_工具
从你的电脑到指定ip网站,用时3ms ttl TTL Time To Live 数据包存活时间 指一个数据包在经过一个路由器时,可传递的最长距离(跃点数)。每当数据包经过一个路由器时,其存活次数就会被减一 256 - 249 7&…...
如何实现一个Java的@注解?
先看一段代码: ControllerAdvice public class GlobalExceptionHandler {ExceptionHandler(value Exception.class)public ResponseEntity defaultErrorHandler(Exception e) {// 将错误信息转成字符串String errorMessage ExceptionUtils.getStackTrace(e);// 创…...

嵌入式|蓝桥杯STM32G431(HAL库开发)——CT117E学习笔记12:DAC数模转换
系列文章目录 嵌入式|蓝桥杯STM32G431(HAL库开发)——CT117E学习笔记01:赛事介绍与硬件平台 嵌入式|蓝桥杯STM32G431(HAL库开发)——CT117E学习笔记02:开发环境安装 嵌入式|蓝桥杯STM32G431(…...

迅饶科技 X2Modbus 网关 GetUser 信息泄露漏洞复现
0x01 产品简介 X2Modbus是上海迅饶自动化科技有限公司Q开发的一款功能很强大的协议转换网关, 这里的X代表各家不同的通信协议, 2是T0的谐音表示转换, Modbus就是最终支持的标准协议是Modbus协议。用户可以根据现场设备的通信协议进行配置,转成标准的Modbus协议。在PC端仿真…...
修改亚马逊云科技账户的密码和MFA
要使用AWS CLI删除当前账户的多因素认证(MFA)设备并修改密码,你需要先确保已安装并配置了AWS CLI,并且你的账户有足够的权限执行这些操作。下面是如何分步进行的指导: 1. 删除MFA设备 首先,你需要找出MFA设备的序列号或ARN。可以…...
提升性能与精准追踪:SkyWalking自定义跟踪忽略插件
前言 当使用分布式追踪系统时,有时需要排除某些端点或路径,以减轻追踪系统的负载或减少不必要的数据收集。为了满足这种需求,SkyWalking 提供了一个可选的插件,即 apm-trace-ignore-plugin,它允许自定义需要跳过的路径…...

第十三届蓝桥杯大赛软件赛省赛CC++大学B组
第十三届蓝桥杯大赛软件赛省赛CC 大学 B 组 文章目录 第十三届蓝桥杯大赛软件赛省赛CC 大学 B 组1、九进制转十进制2、顺子日期3、刷题统计4、修建灌木5、x进制减法6、统计子矩阵7、积木画8、扫雷9、李白打酒加强版10、砍竹子 1、九进制转十进制 计算器计算即可。2999292。 2、…...
后进先出(LIFO)详解
LIFO 是 Last In, First Out 的缩写,中文译为后进先出。这是一种数据结构的工作原则,类似于一摞盘子或一叠书本: 最后放进去的元素最先出来 -想象往筒状容器里放盘子: (1)你放进的最后一个盘子(…...
synchronized 学习
学习源: https://www.bilibili.com/video/BV1aJ411V763?spm_id_from333.788.videopod.episodes&vd_source32e1c41a9370911ab06d12fbc36c4ebc 1.应用场景 不超卖,也要考虑性能问题(场景) 2.常见面试问题: sync出…...
镜像里切换为普通用户
如果你登录远程虚拟机默认就是 root 用户,但你不希望用 root 权限运行 ns-3(这是对的,ns3 工具会拒绝 root),你可以按以下方法创建一个 非 root 用户账号 并切换到它运行 ns-3。 一次性解决方案:创建非 roo…...
Axios请求超时重发机制
Axios 超时重新请求实现方案 在 Axios 中实现超时重新请求可以通过以下几种方式: 1. 使用拦截器实现自动重试 import axios from axios;// 创建axios实例 const instance axios.create();// 设置超时时间 instance.defaults.timeout 5000;// 最大重试次数 cons…...
3403. 从盒子中找出字典序最大的字符串 I
3403. 从盒子中找出字典序最大的字符串 I 题目链接:3403. 从盒子中找出字典序最大的字符串 I 代码如下: class Solution { public:string answerString(string word, int numFriends) {if (numFriends 1) {return word;}string res;for (int i 0;i &…...
大学生职业发展与就业创业指导教学评价
这里是引用 作为软工2203/2204班的学生,我们非常感谢您在《大学生职业发展与就业创业指导》课程中的悉心教导。这门课程对我们即将面临实习和就业的工科学生来说至关重要,而您认真负责的教学态度,让课程的每一部分都充满了实用价值。 尤其让我…...
LRU 缓存机制详解与实现(Java版) + 力扣解决
📌 LRU 缓存机制详解与实现(Java版) 一、📖 问题背景 在日常开发中,我们经常会使用 缓存(Cache) 来提升性能。但由于内存有限,缓存不可能无限增长,于是需要策略决定&am…...

解析奥地利 XARION激光超声检测系统:无膜光学麦克风 + 无耦合剂的技术协同优势及多元应用
在工业制造领域,无损检测(NDT)的精度与效率直接影响产品质量与生产安全。奥地利 XARION开发的激光超声精密检测系统,以非接触式光学麦克风技术为核心,打破传统检测瓶颈,为半导体、航空航天、汽车制造等行业提供了高灵敏…...

【深度学习新浪潮】什么是credit assignment problem?
Credit Assignment Problem(信用分配问题) 是机器学习,尤其是强化学习(RL)中的核心挑战之一,指的是如何将最终的奖励或惩罚准确地分配给导致该结果的各个中间动作或决策。在序列决策任务中,智能体执行一系列动作后获得一个最终奖励,但每个动作对最终结果的贡献程度往往…...
《Offer来了:Java面试核心知识点精讲》大纲
文章目录 一、《Offer来了:Java面试核心知识点精讲》的典型大纲框架Java基础并发编程JVM原理数据库与缓存分布式架构系统设计二、《Offer来了:Java面试核心知识点精讲(原理篇)》技术文章大纲核心主题:Java基础原理与面试高频考点Java虚拟机(JVM)原理Java并发编程原理Jav…...