Successive Convex Approximation算法的学习笔记
文章目录
- 一、代码debug
- 二、原理
本文主要参考了CSDN上的 另一篇文章,但规范了公式的推导过程和修缮了部分代码
一、代码debug
首先,我们将所有的代码放到MATLAB中,很快在命令行中出现了错误信息

很显然有问题,但是我不知道发生了什么问题。我猜测可能是求解器没有正确安装,因此我正确安装了Gurobi求解器

注意安装Gurobi求解器需要验证license,具体内容可以查询网络上的安装教程。在命令行中输入grbgetkey+licence 就可以完成激活。

但此时还是有问题,我经过查询得知是MEX文件无法指定,是系统路径没有添加gurobi文件的bin,因此我添加到系统路径中


此后文件便可以正确运行了,结果如下。


二、原理
现考虑如下非凸二次规划问题
min f ( x , y ) = [ x , y ] Q [ x , y ] T = x 2 + x y − y 2 s.t. − 1 ≤ x ≤ 1 − 1 ≤ y ≤ 1 \begin{aligned} &\operatorname*{min}f(x,y)&& \left.=\left[\begin{matrix}{x,y}\\\end{matrix}\right.\right]Q\left[\begin{matrix}{x,y}\\\end{matrix}\right]^{T} \\ &&&=x^{2}+xy-y^{2} \\ &\text{s.t.}&& -1\leq x\leq1 \\ &&&-1\leq y\leq1 \end{aligned} minf(x,y)s.t.=[x,y]Q[x,y]T=x2+xy−y2−1≤x≤1−1≤y≤1
其中,
Q = [ 1 0.5 0 5 ] . Q=\begin{bmatrix}1&0.5\\0&5\\\end{bmatrix}. Q=[100.55].
原问题的目标函数可以通过特征值分解转化为凸函数减去凸函数的形式,凸函数减去凸函数未必是凸函数。
Q = V D V T = V ( λ P − λ N ) V T = V λ P V T ⏟ P − V λ N V T ⏟ N \begin{aligned}Q=VDV^T=V\left(\lambda_P-\lambda_N\right)V^T=\underbrace{V\lambda_PV^T}_{P}-\underbrace{V\lambda_NV^T}_{N}\end{aligned} Q=VDVT=V(λP−λN)VT=P VλPVT−N VλNVT
其中,矩阵 P P P 和 N N N 都是半正定矩阵,矩阵 D D D 的表达式如下
D = [ λ 1 λ 2 ⋱ λ k λ k + 1 ⋱ ] = [ λ 1 λ 2 ⋱ λ k 0 ⋱ ] ⏟ λ P − [ 0 0 ⋱ 0 − λ k + 1 ⋱ ] ⏟ λ N D=\left.\left[\begin{array}{cccc}\lambda_{1}& & & & & \\ &\lambda_{2}& & & &\\ & & \ddots & & &\\ & & & \lambda_{k}& &\\ & & & & \lambda_{k+1} &\\ & & & & &\ddots \end{array}\right.\right] =\underbrace{\left.\left[\begin{array}{cccc}\lambda_{1}& & & & & \\ &\lambda_{2}& & & &\\ & & \ddots & & &\\ & & & \lambda_{k}& &\\ & & & & 0 &\\ & & & & &\ddots \end{array}\right.\right]}_{\lambda_P} -\underbrace{\left.\left[\begin{array}{cccc}0& & & & & \\ &0 & & & &\\ & & \ddots & & &\\ & & &0& &\\ & & & & - \lambda_{k+1} &\\ & & & & &\ddots \end{array}\right.\right]}_{\lambda_N} D= λ1λ2⋱λkλk+1⋱ =λP λ1λ2⋱λk0⋱ −λN 00⋱0−λk+1⋱
其中 λ 1 , λ 2 , … , λ k ≥ 0 , λ k + 1 , λ k + 2 , … < 0 \lambda_1,\lambda_2,\ldots,\lambda_k\geq0,\lambda_{k+1},\lambda_{k+2},\ldots<0 λ1,λ2,…,λk≥0,λk+1,λk+2,…<0。
对目标函数的第二项 [ x , y ] N [ x , y ] T \left[x,y\right]N[x,y]^T [x,y]N[x,y]T 在点 ( x ∗ , y ∗ ) (x^{*},y^{*}) (x∗,y∗) 处进行凸近似,即在点 ( x ∗ , y ∗ ) (x^{*},y^{*}) (x∗,y∗) 处进行一阶泰勒展开
− [ x ∗ , y ∗ ] N [ x ∗ , y ∗ ] T − [ ∇ ( [ x , y ] N [ x , y ] T ) ∣ x ∗ , y ∗ ] T ( [ x , y ] − [ x ∗ , y ∗ ] ) T = − [ x ∗ , y ∗ ] N [ x ∗ , y ∗ ] T − ( 2 N [ x ∗ , y ∗ ] T ) T ( [ x , y ] − [ x ∗ , y ∗ ] ) T = − 2 [ x ∗ , y ∗ ] N [ x , y ] T + [ x ∗ , y ∗ ] N [ x ∗ , y ∗ ] T \begin{aligned}&-\left[x^*,y^*\right]N\left[x^*,y^*\right]^T-\left[\nabla\left(\left[x,y\right]N\big[x,y\big]^T\right)\right|_{x^*,y^*}\Big]^T\left(\left[x,y\right]-\left[x^*,y^*\right]\right)^T\\ &=-\left[x^*,y^*\right] N \left[x^*,y^*\right]^T -\left(2N\left[x^*,y^*\right]^T\right)^T\left(\left[x,y\right]-\left[x^*,y^*\right]\right)^T\\ &=-2{\Big[}x^{*},y^{*}{\Big]}N{\Big[}x,y{\Big]}^{T}+{\Big[}x^{*},y^{*}{\Big]}N{\Big[}x^{*},y^{*}{\Big]}^{T} \end{aligned} −[x∗,y∗]N[x∗,y∗]T−[∇([x,y]N[x,y]T) x∗,y∗]T([x,y]−[x∗,y∗])T=−[x∗,y∗]N[x∗,y∗]T−(2N[x∗,y∗]T)T([x,y]−[x∗,y∗])T=−2[x∗,y∗]N[x,y]T+[x∗,y∗]N[x∗,y∗]T
至此,原问题可转化为:
min f ( x , y ) = [ x , y ] P [ x , y ] T − 2 [ x ∗ , y ∗ ] N [ x , y ] T + [ x ∗ , y ∗ ] N [ x ∗ , y ∗ ] T s . t . − 1 ≤ x ≤ 1 − 1 ≤ y ≤ 1 \begin{aligned} &\min & &f\left(x,y\right)=\left[x,y\right]P\left[x,y\right]^{T}-2\left[x^{*},y^{*}\right]N\left[x,y\right]^{T}+\left[x^{*},y^{*}\right]N\left[x^{*},y^{*}\right]^{T} \\ &s.t.& &-1\leq x\leq1 \\ & & &-1\leq y\leq1 \end{aligned} mins.t.f(x,y)=[x,y]P[x,y]T−2[x∗,y∗]N[x,y]T+[x∗,y∗]N[x∗,y∗]T−1≤x≤1−1≤y≤1
clear all
close all
clcQ=[1,0.5;0.5,-1];x=sdpvar(2,1);
xmin=-1;
xmax=1;
Constraints=[];
Constraints=[Constraints,xmin<=x<=xmax];
ops = sdpsettings('solver', 'gurobi', 'verbose', 0);[V,D] = eig(Q);%计算A的特征值对角阵D和特征向量V,使AV=VD成立
lambda_P=D;
lambda_N=-D;
lambda_P(find(D<0))=0;
lambda_N(find(D>0))=0;
P=V*lambda_P*V';
N=V*lambda_N*V';
x0=[0.5;0.5];
x_temp=x0;
while(1)f_k=(x'*P*x-2*x_temp'*N*x+x_temp'*N*x_temp);sol=solvesdp(Constraints,f_k,ops);display([sol.info,' 目标函数值:',num2str(value(x_temp'*Q*x_temp))])x_temp_before=x_temp;x_temp=value(x);if sqrt(sum((x_temp-x_temp_before).^2)/length(x_temp))<1e-10breakend
end
x_result=x_tempX = gridsamp([-1 -1;1 1], 40);
[m,~]=size(X);
YX=zeros(m,1);
for i=1:size(X,1)x=X(i,:);y=x*Q*x';YX(i)=y;
end
X1 = reshape(X(:,1),40,40); X2 = reshape(X(:,2),40,40);
YX = reshape(YX, size(X1));
figure(1), mesh(X1, X2, YX)%绘制预测表面
hold on
scatter3(x_temp(1),x_temp(2),x_temp'*Q*x_temp,200,'r','pentagram','filled')
相关文章:
Successive Convex Approximation算法的学习笔记
文章目录 一、代码debug二、原理 本文主要参考了CSDN上的 另一篇文章,但规范了公式的推导过程和修缮了部分代码 一、代码debug 首先,我们将所有的代码放到MATLAB中,很快在命令行中出现了错误信息 很显然有问题,但是我不知道发生…...
IoT数采平台2:文档
IoT数采平台1:开篇IoT数采平台2:文档IoT数采平台3:功能IoT数采平台4:测试 【平台功能】 基础配置、 实时监控、 规则引擎、 告警列表、 系统配置 消息通知:Websocket 设备上线、设备下线、 数据变化、 告警信息、 实时…...
Vue监听器watch的基本用法
文章目录 1. 作用2. 格式3. 示例3.1 value 值为字符串3.2 value 值为函数3.3 value 值为对象 4. 与计算属性对比 1. 作用 监视数据变化,执行一些业务逻辑或异步操作。 2. 格式 监听器 watch 内部以 key :value 的形式定义,key 是 data 中的…...
MySQL UPDATE JOIN 根据一张表或多表来更新另一张表的数据
当使用MySQL时,经常需要根据一张表或多张表的数据来更新另一张表的数据。这种情况下,我们可以使用UPDATE语句结合JOIN操作来实现这一需求。本文将介绍MySQL中使用UPDATE JOIN的技术。 什么是UPDATE JOIN UPDATE JOIN是MySQL中一种结合UPDATE语句和JOIN…...
JS实现继承的方式ES6版
上一篇:JS实现继承的方式原生版 ES6的继承 主要是依赖extends关键字来实现继承,且继承的效果类似于寄生组合继承。 class Parent() { }class Child extends Parent {constructor(x, y, color) {super(x, y);this.color color;} }子类必须在construct…...
elementui 左侧或水平导航菜单栏与main区域联动
系列文章目录 一、elementui 导航菜单栏和Breadcrumb 面包屑关联 二、elementui 左侧导航菜单栏与main区域联动 三、elementui 中设置图片的高度并支持PC和手机自适应 四、elementui 实现一个固定位置的Pagination(分页)组件 文章目录 系列文章目录…...
YUNBEE云贝-技术分享:PostgreSQL分区表
引言 PostgreSQL作为一款高度可扩展的企业级关系型数据库管理系统,其内置的分区表功能在处理大规模数据场景中扮演着重要角色。本文将深入探讨PostgreSQL分区表的实现逻辑、详细实验过程,并辅以分区表相关的视图查询、分区表维护及优化案例,…...
5.2 通用代码,数组求和,拷贝数组,si配合di翻转数组
5.2 通用代码,数组求和,拷贝数组,si配合di翻转数组 1. 通用代码 通用代码类似于一个用汇编语言写程序的一个框架,也类似于c语言的头文件编写 assume cs:code,ds:data,ss:stack data segmentdata endsstack segmentstack endsco…...
Oracle23免费版简易安装攻略
installation-guide 1 安装 root用户下 wget https://yum.oracle.com/repo/OracleLinux/OL8/developer/x86_64/getPackage/oracle-database-preinstall-23c-1.0-1.el8.x86_64.rpm wget https://download.oracle.com/otn-pub/otn_software/db-free/oracle-database-free-23c-1…...
《论文阅读》一种基于反事实推理的会话情绪检测无训练去偏框架 EMNLP 2023
《论文阅读》一种基于反事实推理的会话情绪检测无训练去偏框架 EMNLP 2023 前言简介相关工作模型构架Basic ClassificationBias ExtractionUnbiased Inference实验结果前言 亲身阅读感受分享,细节画图解释,再也不用担心看不懂论文啦~ 无抄袭,无复制,纯手工敲击键盘~ 今天…...
【编译lombok问题】已解决:编译突然找不到符号问题-get/set找不到符号
一、场景:编译突然找不到符号 报错信息: 找不到符号 符号:方法getName() 二、原因: 没有使用lombok支持的编译器 三、解决方法: 打开File-Settings,按以下步骤进行设置; 修改:-Djp…...
第四篇:3.3 无效流量(Invalid traffic) - IAB/MRC及《增强现实广告效果测量指南1.0》
翻译计划 第一篇概述—IAB与MRC及《增强现实广告效果测量指南》之目录、适用范围及术语第二篇广告效果测量定义和其他矩阵之- 3.1 广告印象(AD Impression)第三篇广告效果测量定义和其他矩阵之- 3.2 可见性 (Viewability)第四篇广…...
PyTorch示例——使用Transformer写古诗
文章目录 PyTorch示例——使用Transformer写古诗1. 前言2. 版本信息3. 导包4. 数据与预处理数据下载先看一下原始数据开始处理数据,过滤掉异常数据定义 词典编码器 Tokenizer定义数据集类 MyDataset测试一下MyDataset、Tokenizer、DataLoader 5. 构建模型位置编码器…...
vue 视频添加水印
1.需求背景 其实腾讯云点播的api也支持视频水印,但是只有单个水印,大概效果是这样子的,不满足我们的需求,我们的需求是需要视频中都是水印。 腾讯云点播水印 项目需求的水印(主要是防录屏,最后的实现效果是这样&…...
Web Animations API 动画
Element.animate() dom.animate动画可以避免污染dom原有的css动画 参考资料 Element.animate() - Web API 接口参考 | MDN Element: getAnimations() method - Web APIs | MDN .tunnel{width:200px;height:200px;background-color:#38f;}<div class"tunnel" …...
【大数据存储】实验五:Mapreduce
实验Mapreduce实例——排序(补充程序) 实验环境 Linux Ubuntu 16.04 jdk-8u191-linux-x64 hadoop-3.0.0 hadoop-eclipse-plugin-2.7.3.jar eclipse-java-juno-SR2-linux-gtk-x86_64 实验内容 在电商网站上,当我们进入某电商页面里浏览…...
日志服务 HarmonyOS NEXT 日志采集最佳实践
作者:高玉龙(元泊) 背景信息 随着数字化新时代的全面展开以及 5G 与物联网(IoT)技术的迅速普及,操作系统正面临前所未有的变革需求。在这个背景下,华为公司自主研发的鸿蒙操作系统(…...
Educational Codeforces Round 133 (Rated for Div. 2) (C dp D前缀和优化倍数关系dp)
A:能用3肯定用三,然后分类讨论即可 #include<bits/stdc.h> using namespace std; const int N 2e510,M2*N,mod998244353; #define int long long typedef long long LL; typedef pair<int, int> PII; typedef unsigned long long ULL; usi…...
【讲解下如何Stable Diffusion本地部署】
🎥博主:程序员不想YY啊 💫CSDN优质创作者,CSDN实力新星,CSDN博客专家 🤗点赞🎈收藏⭐再看💫养成习惯 ✨希望本文对您有所裨益,如有不足之处,欢迎在评论区提出…...
观成科技:隐蔽隧道工具Ligolo-ng加密流量分析
1.工具介绍 Ligolo-ng是一款由go编写的高效隧道工具,该工具基于TUN接口实现其功能,利用反向TCP/TLS连接建立一条隐蔽的通信信道,支持使用Let’s Encrypt自动生成证书。Ligolo-ng的通信隐蔽性体现在其支持多种连接方式,适应复杂网…...
Android Wi-Fi 连接失败日志分析
1. Android wifi 关键日志总结 (1) Wi-Fi 断开 (CTRL-EVENT-DISCONNECTED reason3) 日志相关部分: 06-05 10:48:40.987 943 943 I wpa_supplicant: wlan0: CTRL-EVENT-DISCONNECTED bssid44:9b:c1:57:a8:90 reason3 locally_generated1解析: CTR…...
云启出海,智联未来|阿里云网络「企业出海」系列客户沙龙上海站圆满落地
借阿里云中企出海大会的东风,以**「云启出海,智联未来|打造安全可靠的出海云网络引擎」为主题的阿里云企业出海客户沙龙云网络&安全专场于5.28日下午在上海顺利举办,现场吸引了来自携程、小红书、米哈游、哔哩哔哩、波克城市、…...
基于Flask实现的医疗保险欺诈识别监测模型
基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施,由雇主和个人按一定比例缴纳保险费,建立社会医疗保险基金,支付雇员医疗费用的一种医疗保险制度, 它是促进社会文明和进步的…...
【磁盘】每天掌握一个Linux命令 - iostat
目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat(I/O Statistics)是Linux系统下用于监视系统输入输出设备和CPU使…...
2021-03-15 iview一些问题
1.iview 在使用tree组件时,发现没有set类的方法,只有get,那么要改变tree值,只能遍历treeData,递归修改treeData的checked,发现无法更改,原因在于check模式下,子元素的勾选状态跟父节…...
如何将联系人从 iPhone 转移到 Android
从 iPhone 换到 Android 手机时,你可能需要保留重要的数据,例如通讯录。好在,将通讯录从 iPhone 转移到 Android 手机非常简单,你可以从本文中学习 6 种可靠的方法,确保随时保持连接,不错过任何信息。 第 1…...
Python爬虫(二):爬虫完整流程
爬虫完整流程详解(7大核心步骤实战技巧) 一、爬虫完整工作流程 以下是爬虫开发的完整流程,我将结合具体技术点和实战经验展开说明: 1. 目标分析与前期准备 网站技术分析: 使用浏览器开发者工具(F12&…...
css3笔记 (1) 自用
outline: none 用于移除元素获得焦点时默认的轮廓线 broder:0 用于移除边框 font-size:0 用于设置字体不显示 list-style: none 消除<li> 标签默认样式 margin: xx auto 版心居中 width:100% 通栏 vertical-align 作用于行内元素 / 表格单元格ÿ…...
mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包
文章目录 现象:mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包遇到 rpm 命令找不到已经安装的 MySQL 包时,可能是因为以下几个原因:1.MySQL 不是通过 RPM 包安装的2.RPM 数据库损坏3.使用了不同的包名或路径4.使用其他包…...
