线性代数笔记23--马尔可夫矩阵、傅里叶级数
1. 马尔可夫矩阵
例子
A = [ . 1 . 001 . 3 . 2 . 099 . 3 . 7 0 . 4 ] A= \begin{bmatrix} .1 & .001 & .3\\ .2 & .099 & .3\\ .7 & 0 & .4 \end{bmatrix} A= .1.2.7.001.0990.3.3.4
马尔可夫矩阵满足条件
- λ = 1 为特征值 \lambda=1为特征值 λ=1为特征值
- 其他特征值 ∀ ∣ λ i ∣ < 1 \forall |\lambda_i| \lt1 ∀∣λi∣<1
- ∀ a i j ≥ 0 , ∀ ∑ i = 0 n a i k = 1 \forall a_{ij} \ge 0, \forall \sum_{i=0}^{n}a_{ik}=1 ∀aij≥0,∀∑i=0naik=1
为什么 λ = 1 \lambda=1 λ=1一定为其特征值
A − I = [ − . 9 . 001 . 3 . 2 − . 001 . 3 . 7 0 − . 6 ] A-I= \begin{bmatrix} -.9 & .001 & .3\\ .2 & -.001 & .3\\ .7 & 0 & -.6 \end{bmatrix} A−I= −.9.2.7.001−.0010.3.3−.6
把所有非第一行加到第一行,可以把第一行变为全 0 0 0。
所以矩阵 A − I A-I A−I为奇异矩阵。
也就是向量 ( 1 , 1 , 1 ) ∈ N ( ( A − I ) ⊤ ) (1,1,1) \in N((A-I)^{\top}) (1,1,1)∈N((A−I)⊤),即 λ = 1 \lambda=1 λ=1是 A ⊤ A^{\top} A⊤的一个特征值。
引入
A ⊤ 与 A A^{\top}与A A⊤与A有相同的特征值,当 A A A为方阵时。
知乎证明
d e t A = d e t A ⊤ d e t A − λ I = d e t ( A − λ I ) ⊤ = d e t A ⊤ − λ I d e t A − λ I = d e t A ⊤ − λ I det\ A=det\ A^{\top}\\ det\ A-\lambda I=det (A-\lambda I)^\top=det\ A^{\top}-\lambda I\\ det\ A-\lambda I=det \ A^{\top}-\lambda I det A=det A⊤det A−λI=det(A−λI)⊤=det A⊤−λIdet A−λI=det A⊤−λI
对于 d e t A − λ I = 0 与 d e t A ⊤ − λ I = 0 det\ A- \lambda I=0与det A^{\top}-\lambda I=0 det A−λI=0与detA⊤−λI=0
可以将他们化为相同的主对角线的形式,即关于 λ \lambda λ的 n n n阶多项式。
所以他们的特征值相同。
对 A A A化为 R R R形式的行变化,可以同样对 A ⊤ A^{\top} A⊤施行列变换为 L L L。
且 L = R ⊤ L=R^{\top} L=R⊤。
所以 λ = 1 \lambda=1 λ=1是马尔可夫矩阵的一个特征向量。
1.1 应用
预测
u k + 1 = A u k u_{k+1}=Au_k uk+1=Auk
人口迁移
假设某一时间内, c c c州到 d d d州人口迁移组成。
A = [ 0.9 0.2 0.1 0.8 ] A=\begin{bmatrix} 0.9 & 0.2\\ 0.1 & 0.8 \end{bmatrix} A=[0.90.10.20.8]
给定初值 c d c \ d c d州人口初值,我们则可以预测未来变化。
[ u c u d ] = [ 0 1000 ] \begin{bmatrix} u_{c}\\u_{d} \end{bmatrix}= \begin{bmatrix} 0\\1000 \end{bmatrix} [ucud]=[01000]
λ 1 = 1 , λ 2 = 0.7 \lambda_1=1,\lambda_2=0.7 λ1=1,λ2=0.7
特征向量
X 1 = [ 2 1 ] X 2 = [ 1 − 1 ] X_1=\begin{bmatrix} 2\\1 \end{bmatrix} X_2=\begin{bmatrix} 1\\-1 \end{bmatrix} X1=[21]X2=[1−1]
稳态方程
u k = c 1 × 1 k [ 2 1 ] + c 2 × ( 0.7 ) k [ − 1 1 ] u_k=c_1\times 1^k\begin{bmatrix}2\\1\end{bmatrix}+c_2\times (0.7)^k\begin{bmatrix}-1\\1\end{bmatrix} uk=c1×1k[21]+c2×(0.7)k[−11]
由于
u 0 = [ 0 1000 ] u_0=\begin{bmatrix}0\\1000\end{bmatrix} u0=[01000]
可以求得
c 1 = 1000 / 3 , c 2 = 2000 / 3 c_1=1000/3,c_2=2000/3 c1=1000/3,c2=2000/3
再根据公式即可预测 k k k年后人口状况了。
2. 傅里叶级数
2.1 标准正交基的投影
给定空间 R n R^n Rn上的一组标准正交基
q 1 , q 2 ⋯ q n q_1,q_2 \cdots q_n q1,q2⋯qn
∀ 向量 V 可被表示为 v = ∑ i = 1 n x i q i \forall 向量 V可被表示为\\ v=\sum_{i=1}^{n}x_iq_i ∀向量V可被表示为v=i=1∑nxiqi
如何快速求得 x i x_i xi
q i ⊤ v = [ 0 0 ⋯ x i ⋯ 0 ] q_i^{\top}v=[0\ 0\cdots x_i\ \cdots0] qi⊤v=[0 0⋯xi ⋯0]
矩阵形式
Q X = V X = Q − 1 V = Q ⊤ V x i = q i ⊤ V QX=V\\ X=Q^{-1}V=Q^{\top}V\\ x_i=q_i^{\top}V QX=VX=Q−1V=Q⊤Vxi=qi⊤V
傅里叶级数
f ( x ) = a 0 + a 1 cos x + a 2 sin x + a 3 cos 2 x + ⋯ f ( x ) = f ( x + 2 π ) f(x)=a_0+a_1\cos x+a_2\sin x+a_3\cos2x+\cdots \\ f(x)=f(x+2\pi) f(x)=a0+a1cosx+a2sinx+a3cos2x+⋯f(x)=f(x+2π)
向量点积
v ⊤ w = v 1 w 1 + v 2 w 2 + ⋯ + v n w n v^{\top}w=v_1w_1+v_2w_2+\cdots+v_nw_n v⊤w=v1w1+v2w2+⋯+vnwn
函数内积( i n n e r p r o d u c t inner\ product inner product)
f ⊤ g = ∫ 0 2 π f ( x ) g ( x ) d x f^{\top}g=\int_{0}^{2\pi}f(x)g(x)dx f⊤g=∫02πf(x)g(x)dx
相关文章:
线性代数笔记23--马尔可夫矩阵、傅里叶级数
1. 马尔可夫矩阵 例子 A [ . 1 . 001 . 3 . 2 . 099 . 3 . 7 0 . 4 ] A \begin{bmatrix} .1 & .001 & .3\\ .2 & .099 & .3\\ .7 & 0 & .4 \end{bmatrix} A .1.2.7.001.0990.3.3.4 马尔可夫矩阵满足条件 λ 1 为特征值 \lambda1为特征…...
Elasticsearch 压测实践总结
背景 搜索、ES运维场景离不开压力测试。 1.宿主机层面变更:参数调优 & 配置调整 & 硬件升级2.集群层面变更:参数调优3.索引层面变更:mapping调整 当然还有使用层面变更,使用API调优(不属于该文章的讨论范围…...
Spirngboot JWT快速配置和使用
2、JWT 2.1、JWT介绍 JWT是JSON Web Token的缩写,即JSON Web令牌,是一种自包含令牌。 是为了在网络应用环境间传递声明而执行的一种基于JSON的开放标准。 JWT的声明一般被用来在身份提供者和服务提供者间传递被认证的用户身份信息,以便于从…...
【Java SE】继承
🥰🥰🥰来都来了,不妨点个关注叭! 👉博客主页:欢迎各位大佬!👈 文章目录 1. 继承1.1 继承是什么1.2 继承的意义1.3 继承的语法1.4 继承的方式1.5 子类中访问父类成员1.5.1 子类中访问…...
设计模式(19):策略模式
策略模式 策略模式对应与解决某一个问题的一个算法族,允许用户从该算法族中任选一个算法解决某一问题,同时可以方便的更换算法或者增加新的算法。并且由客户端决定调用哪个算法。 本质 分离算法,选择实现; 策略模式角色 上下…...
Linux 命令 top 详解
1 top命令介绍 Linux系统中,Top命令主要用于实时运行系统的监控,包括Linux内核管理的进程或者线程的资源占用情况。这个命令对所有正在运行的进程和系统负荷提供不断更新的概览信息,包括系统负载、CPU利用分布情况、内存使用、每个进程的内容…...
Android安卓开发 - 简单介绍(一)
最近呢需要重构还有维护安卓项目,所以最近会从零开始梳理开发的一些知识点以及开发的内容 前面已经写了安装的教程,idea怎么安装,还有官方的开发工具Android Studio怎么安装 2024最新版Android studio安装入门教程(非常详细&…...
AJAX —— 学习(二)
目录 一、利用 JSON 字符串 返回数据 (一)基础代码 (二)原理及实现 二、nodmon 工具 自动重启服务 (一)用途 (二)下载 (三)使用 三、IE 缓存问题 &a…...
CSC博士联培申请时间线
暂时只记得这么多了,有问题会及时修改。 #mermaid-svg-ZMjY9etaS7StCVuw {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-ZMjY9etaS7StCVuw .error-icon{fill:#552222;}#mermaid-svg-ZMjY9etaS7StCVuw .e…...
大数据实验三-HBase编程实践
目录 一.实验内容 二.实验目的 三.实验过程截图及说明 1、安装HBase 2、配置伪分布式模式: 3、使用hbase的shell命令来操作表: 4、使用hbase提供的javaAPI来编程实现类似操作: 5、实验总结及心得体会…...
【Python】Pillow支持的图像文件格式
完全支持格式只读格式只写格式仅标识格式BLPCURPALMBUFRBMPDCXPDFGRIBDDSFITSXV ThumbnailsHDF5DIBFLCMPEGEPSFPXGIFFTEXICNSGBRICOGDIMIMTJPEGIPTC/NAAJPEG 2000MCIDASMSPMICPCXMPOPNGPCDPPMPIXARSGIPSDSPIDERQOITGASUNTIFFWALwebpWMF、EMFXBMXPM 参考文献 图像文件格式 - P…...
算法——最小生成树
Prim算法: 算法步骤: 1.选择一个起始节点作为最小生成树的起点。 2.将该起始节点加入最小生成树集合,并将其标记为已访问。 3.在所有与最小生成树集合相邻的边中,选择权重最小的边和它连接的未访问节点。 4.将该边和节点加入最小…...
OpenHarmony相机和媒体库-如何在ArkTS中调用相机拍照和录像。
介绍 此Demo展示如何在ArkTS中调用相机拍照和录像,以及如何使用媒体库接口进行媒体文件的增、删、改、查操作。 本示例用到了权限管理能力ohos.abilityAccessCtrl 相机模块能力接口ohos.multimedia.camera 图片处理接口ohos.multimedia.image 音视频相关媒体业…...
【EasyExcel】多sheet、追加列
业务-EasyExcel多sheet、追加列 背景 最近接到一个导出Excel的业务,需求就是多sheet,每个sheet导出不同结构,第一个sheet里面能够根据最后一列动态的追加列,追加多少得看运营人员传了多少需求列。原本使用的 pig4cloud 架子&…...
韩顺平 | 零基础快速学Python
环境准备 开发工具:IDLE、Pycharm、Sublime Text、Eric 、文本编辑器(记事本/editplus/notepad) Python特点:既支持面向过程OOP、也支持面向对象编程;具有解释性,不需要编程二进制代码,可以直…...
docker部署DOS游戏
下载镜像 docker pull registry.cn-beijing.aliyuncs.com/wuxingge123/dosgame-web-docker:latestdocker-compose部署 vim docker-compose.yml version: 3 services:dosgame:container_name: dosgameimage: registry.cn-beijing.aliyuncs.com/wuxingge123/dosgame-web-docke…...
基于单片机的无线红外报警系统
**单片机设计介绍,基于单片机的无线红外报警系统 文章目录 一 概要二、功能设计设计思路 三、 软件设计原理图 五、 程序六、 文章目录 一 概要 基于单片机的无线红外报警系统是一种结合了单片机控制技术和无线红外传感技术的安防系统。该系统通过无线红外传感器实…...
【JAVAEE学习】探究Java中多线程的使用和重点及考点
˃͈꒵˂͈꒱ write in front ꒰˃͈꒵˂͈꒱ ʕ̯•͡˔•̯᷅ʔ大家好,我是xiaoxie.希望你看完之后,有不足之处请多多谅解,让我们一起共同进步૮₍❀ᴗ͈ . ᴗ͈ აxiaoxieʕ̯•͡˔•̯᷅ʔ—CSDN博客 本文由xiaoxieʕ̯•͡˔•̯᷅ʔ 原创 CSDN 如…...
Day81:服务攻防-开发框架安全SpringBootStruts2LaravelThinkPHPCVE复现
目录 PHP-框架安全-Thinkphp&Laravel Laravel CVE-2021-3129 RCE Thinkphp 版本3.X RCE-6.X RCE 版本6.X lang RCE J2EE-框架安全-SpringBoot&Struts2 Struct2 旧漏洞(CVE-2016-0785等) struts2 代码执行 (CVE-2020-17530)s2-061 Str…...
.kat6.l6st6r勒索病毒肆虐,这些应对策略或许能帮到你
引言: 近年来,网络安全问题日益凸显,其中勒索病毒更是成为了公众关注的焦点。其中,.kat6.l6st6r勒索病毒以其独特的传播方式和破坏力,给全球用户带来了极大的困扰。本文将深入探讨.kat6.l6st6r勒索病毒的特点…...
突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合
强化学习(Reinforcement Learning, RL)是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程,然后使用强化学习的Actor-Critic机制(中文译作“知行互动”机制),逐步迭代求解…...
Qt/C++开发监控GB28181系统/取流协议/同时支持udp/tcp被动/tcp主动
一、前言说明 在2011版本的gb28181协议中,拉取视频流只要求udp方式,从2016开始要求新增支持tcp被动和tcp主动两种方式,udp理论上会丢包的,所以实际使用过程可能会出现画面花屏的情况,而tcp肯定不丢包,起码…...
12.找到字符串中所有字母异位词
🧠 题目解析 题目描述: 给定两个字符串 s 和 p,找出 s 中所有 p 的字母异位词的起始索引。 返回的答案以数组形式表示。 字母异位词定义: 若两个字符串包含的字符种类和出现次数完全相同,顺序无所谓,则互为…...
是否存在路径(FIFOBB算法)
题目描述 一个具有 n 个顶点e条边的无向图,该图顶点的编号依次为0到n-1且不存在顶点与自身相连的边。请使用FIFOBB算法编写程序,确定是否存在从顶点 source到顶点 destination的路径。 输入 第一行两个整数,分别表示n 和 e 的值(1…...
Maven 概述、安装、配置、仓库、私服详解
目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...
Reasoning over Uncertain Text by Generative Large Language Models
https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829 1. 概述 文本中的不确定性在许多语境中传达,从日常对话到特定领域的文档(例如医学文档)(Heritage 2013;Landmark、Gulbrandsen 和 Svenevei…...
华硕a豆14 Air香氛版,美学与科技的馨香融合
在快节奏的现代生活中,我们渴望一个能激发创想、愉悦感官的工作与生活伙伴,它不仅是冰冷的科技工具,更能触动我们内心深处的细腻情感。正是在这样的期许下,华硕a豆14 Air香氛版翩然而至,它以一种前所未有的方式&#x…...
《C++ 模板》
目录 函数模板 类模板 非类型模板参数 模板特化 函数模板特化 类模板的特化 模板,就像一个模具,里面可以将不同类型的材料做成一个形状,其分为函数模板和类模板。 函数模板 函数模板可以简化函数重载的代码。格式:templa…...
回溯算法学习
一、电话号码的字母组合 import java.util.ArrayList; import java.util.List;import javax.management.loading.PrivateClassLoader;public class letterCombinations {private static final String[] KEYPAD {"", //0"", //1"abc", //2"…...
c++第七天 继承与派生2
这一篇文章主要内容是 派生类构造函数与析构函数 在派生类中重写基类成员 以及多继承 第一部分:派生类构造函数与析构函数 当创建一个派生类对象时,基类成员是如何初始化的? 1.当派生类对象创建的时候,基类成员的初始化顺序 …...
