线性代数笔记23--马尔可夫矩阵、傅里叶级数
1. 马尔可夫矩阵
例子
A = [ . 1 . 001 . 3 . 2 . 099 . 3 . 7 0 . 4 ] A= \begin{bmatrix} .1 & .001 & .3\\ .2 & .099 & .3\\ .7 & 0 & .4 \end{bmatrix} A= .1.2.7.001.0990.3.3.4
马尔可夫矩阵满足条件
- λ = 1 为特征值 \lambda=1为特征值 λ=1为特征值
- 其他特征值 ∀ ∣ λ i ∣ < 1 \forall |\lambda_i| \lt1 ∀∣λi∣<1
- ∀ a i j ≥ 0 , ∀ ∑ i = 0 n a i k = 1 \forall a_{ij} \ge 0, \forall \sum_{i=0}^{n}a_{ik}=1 ∀aij≥0,∀∑i=0naik=1
为什么 λ = 1 \lambda=1 λ=1一定为其特征值
A − I = [ − . 9 . 001 . 3 . 2 − . 001 . 3 . 7 0 − . 6 ] A-I= \begin{bmatrix} -.9 & .001 & .3\\ .2 & -.001 & .3\\ .7 & 0 & -.6 \end{bmatrix} A−I= −.9.2.7.001−.0010.3.3−.6
把所有非第一行加到第一行,可以把第一行变为全 0 0 0。
所以矩阵 A − I A-I A−I为奇异矩阵。
也就是向量 ( 1 , 1 , 1 ) ∈ N ( ( A − I ) ⊤ ) (1,1,1) \in N((A-I)^{\top}) (1,1,1)∈N((A−I)⊤),即 λ = 1 \lambda=1 λ=1是 A ⊤ A^{\top} A⊤的一个特征值。
引入
A ⊤ 与 A A^{\top}与A A⊤与A有相同的特征值,当 A A A为方阵时。
知乎证明
d e t A = d e t A ⊤ d e t A − λ I = d e t ( A − λ I ) ⊤ = d e t A ⊤ − λ I d e t A − λ I = d e t A ⊤ − λ I det\ A=det\ A^{\top}\\ det\ A-\lambda I=det (A-\lambda I)^\top=det\ A^{\top}-\lambda I\\ det\ A-\lambda I=det \ A^{\top}-\lambda I det A=det A⊤det A−λI=det(A−λI)⊤=det A⊤−λIdet A−λI=det A⊤−λI
对于 d e t A − λ I = 0 与 d e t A ⊤ − λ I = 0 det\ A- \lambda I=0与det A^{\top}-\lambda I=0 det A−λI=0与detA⊤−λI=0
可以将他们化为相同的主对角线的形式,即关于 λ \lambda λ的 n n n阶多项式。
所以他们的特征值相同。
对 A A A化为 R R R形式的行变化,可以同样对 A ⊤ A^{\top} A⊤施行列变换为 L L L。
且 L = R ⊤ L=R^{\top} L=R⊤。
所以 λ = 1 \lambda=1 λ=1是马尔可夫矩阵的一个特征向量。
1.1 应用
预测
u k + 1 = A u k u_{k+1}=Au_k uk+1=Auk
人口迁移
假设某一时间内, c c c州到 d d d州人口迁移组成。
A = [ 0.9 0.2 0.1 0.8 ] A=\begin{bmatrix} 0.9 & 0.2\\ 0.1 & 0.8 \end{bmatrix} A=[0.90.10.20.8]
给定初值 c d c \ d c d州人口初值,我们则可以预测未来变化。
[ u c u d ] = [ 0 1000 ] \begin{bmatrix} u_{c}\\u_{d} \end{bmatrix}= \begin{bmatrix} 0\\1000 \end{bmatrix} [ucud]=[01000]
λ 1 = 1 , λ 2 = 0.7 \lambda_1=1,\lambda_2=0.7 λ1=1,λ2=0.7
特征向量
X 1 = [ 2 1 ] X 2 = [ 1 − 1 ] X_1=\begin{bmatrix} 2\\1 \end{bmatrix} X_2=\begin{bmatrix} 1\\-1 \end{bmatrix} X1=[21]X2=[1−1]
稳态方程
u k = c 1 × 1 k [ 2 1 ] + c 2 × ( 0.7 ) k [ − 1 1 ] u_k=c_1\times 1^k\begin{bmatrix}2\\1\end{bmatrix}+c_2\times (0.7)^k\begin{bmatrix}-1\\1\end{bmatrix} uk=c1×1k[21]+c2×(0.7)k[−11]
由于
u 0 = [ 0 1000 ] u_0=\begin{bmatrix}0\\1000\end{bmatrix} u0=[01000]
可以求得
c 1 = 1000 / 3 , c 2 = 2000 / 3 c_1=1000/3,c_2=2000/3 c1=1000/3,c2=2000/3
再根据公式即可预测 k k k年后人口状况了。
2. 傅里叶级数
2.1 标准正交基的投影
给定空间 R n R^n Rn上的一组标准正交基
q 1 , q 2 ⋯ q n q_1,q_2 \cdots q_n q1,q2⋯qn
∀ 向量 V 可被表示为 v = ∑ i = 1 n x i q i \forall 向量 V可被表示为\\ v=\sum_{i=1}^{n}x_iq_i ∀向量V可被表示为v=i=1∑nxiqi
如何快速求得 x i x_i xi
q i ⊤ v = [ 0 0 ⋯ x i ⋯ 0 ] q_i^{\top}v=[0\ 0\cdots x_i\ \cdots0] qi⊤v=[0 0⋯xi ⋯0]
矩阵形式
Q X = V X = Q − 1 V = Q ⊤ V x i = q i ⊤ V QX=V\\ X=Q^{-1}V=Q^{\top}V\\ x_i=q_i^{\top}V QX=VX=Q−1V=Q⊤Vxi=qi⊤V
傅里叶级数
f ( x ) = a 0 + a 1 cos x + a 2 sin x + a 3 cos 2 x + ⋯ f ( x ) = f ( x + 2 π ) f(x)=a_0+a_1\cos x+a_2\sin x+a_3\cos2x+\cdots \\ f(x)=f(x+2\pi) f(x)=a0+a1cosx+a2sinx+a3cos2x+⋯f(x)=f(x+2π)
向量点积
v ⊤ w = v 1 w 1 + v 2 w 2 + ⋯ + v n w n v^{\top}w=v_1w_1+v_2w_2+\cdots+v_nw_n v⊤w=v1w1+v2w2+⋯+vnwn
函数内积( i n n e r p r o d u c t inner\ product inner product)
f ⊤ g = ∫ 0 2 π f ( x ) g ( x ) d x f^{\top}g=\int_{0}^{2\pi}f(x)g(x)dx f⊤g=∫02πf(x)g(x)dx
相关文章:
线性代数笔记23--马尔可夫矩阵、傅里叶级数
1. 马尔可夫矩阵 例子 A [ . 1 . 001 . 3 . 2 . 099 . 3 . 7 0 . 4 ] A \begin{bmatrix} .1 & .001 & .3\\ .2 & .099 & .3\\ .7 & 0 & .4 \end{bmatrix} A .1.2.7.001.0990.3.3.4 马尔可夫矩阵满足条件 λ 1 为特征值 \lambda1为特征…...
Elasticsearch 压测实践总结
背景 搜索、ES运维场景离不开压力测试。 1.宿主机层面变更:参数调优 & 配置调整 & 硬件升级2.集群层面变更:参数调优3.索引层面变更:mapping调整 当然还有使用层面变更,使用API调优(不属于该文章的讨论范围…...
Spirngboot JWT快速配置和使用
2、JWT 2.1、JWT介绍 JWT是JSON Web Token的缩写,即JSON Web令牌,是一种自包含令牌。 是为了在网络应用环境间传递声明而执行的一种基于JSON的开放标准。 JWT的声明一般被用来在身份提供者和服务提供者间传递被认证的用户身份信息,以便于从…...
【Java SE】继承
🥰🥰🥰来都来了,不妨点个关注叭! 👉博客主页:欢迎各位大佬!👈 文章目录 1. 继承1.1 继承是什么1.2 继承的意义1.3 继承的语法1.4 继承的方式1.5 子类中访问父类成员1.5.1 子类中访问…...
设计模式(19):策略模式
策略模式 策略模式对应与解决某一个问题的一个算法族,允许用户从该算法族中任选一个算法解决某一问题,同时可以方便的更换算法或者增加新的算法。并且由客户端决定调用哪个算法。 本质 分离算法,选择实现; 策略模式角色 上下…...
Linux 命令 top 详解
1 top命令介绍 Linux系统中,Top命令主要用于实时运行系统的监控,包括Linux内核管理的进程或者线程的资源占用情况。这个命令对所有正在运行的进程和系统负荷提供不断更新的概览信息,包括系统负载、CPU利用分布情况、内存使用、每个进程的内容…...
Android安卓开发 - 简单介绍(一)
最近呢需要重构还有维护安卓项目,所以最近会从零开始梳理开发的一些知识点以及开发的内容 前面已经写了安装的教程,idea怎么安装,还有官方的开发工具Android Studio怎么安装 2024最新版Android studio安装入门教程(非常详细&…...
AJAX —— 学习(二)
目录 一、利用 JSON 字符串 返回数据 (一)基础代码 (二)原理及实现 二、nodmon 工具 自动重启服务 (一)用途 (二)下载 (三)使用 三、IE 缓存问题 &a…...
CSC博士联培申请时间线
暂时只记得这么多了,有问题会及时修改。 #mermaid-svg-ZMjY9etaS7StCVuw {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-ZMjY9etaS7StCVuw .error-icon{fill:#552222;}#mermaid-svg-ZMjY9etaS7StCVuw .e…...
大数据实验三-HBase编程实践
目录 一.实验内容 二.实验目的 三.实验过程截图及说明 1、安装HBase 2、配置伪分布式模式: 3、使用hbase的shell命令来操作表: 4、使用hbase提供的javaAPI来编程实现类似操作: 5、实验总结及心得体会…...
【Python】Pillow支持的图像文件格式
完全支持格式只读格式只写格式仅标识格式BLPCURPALMBUFRBMPDCXPDFGRIBDDSFITSXV ThumbnailsHDF5DIBFLCMPEGEPSFPXGIFFTEXICNSGBRICOGDIMIMTJPEGIPTC/NAAJPEG 2000MCIDASMSPMICPCXMPOPNGPCDPPMPIXARSGIPSDSPIDERQOITGASUNTIFFWALwebpWMF、EMFXBMXPM 参考文献 图像文件格式 - P…...
算法——最小生成树
Prim算法: 算法步骤: 1.选择一个起始节点作为最小生成树的起点。 2.将该起始节点加入最小生成树集合,并将其标记为已访问。 3.在所有与最小生成树集合相邻的边中,选择权重最小的边和它连接的未访问节点。 4.将该边和节点加入最小…...
OpenHarmony相机和媒体库-如何在ArkTS中调用相机拍照和录像。
介绍 此Demo展示如何在ArkTS中调用相机拍照和录像,以及如何使用媒体库接口进行媒体文件的增、删、改、查操作。 本示例用到了权限管理能力ohos.abilityAccessCtrl 相机模块能力接口ohos.multimedia.camera 图片处理接口ohos.multimedia.image 音视频相关媒体业…...
【EasyExcel】多sheet、追加列
业务-EasyExcel多sheet、追加列 背景 最近接到一个导出Excel的业务,需求就是多sheet,每个sheet导出不同结构,第一个sheet里面能够根据最后一列动态的追加列,追加多少得看运营人员传了多少需求列。原本使用的 pig4cloud 架子&…...
韩顺平 | 零基础快速学Python
环境准备 开发工具:IDLE、Pycharm、Sublime Text、Eric 、文本编辑器(记事本/editplus/notepad) Python特点:既支持面向过程OOP、也支持面向对象编程;具有解释性,不需要编程二进制代码,可以直…...
docker部署DOS游戏
下载镜像 docker pull registry.cn-beijing.aliyuncs.com/wuxingge123/dosgame-web-docker:latestdocker-compose部署 vim docker-compose.yml version: 3 services:dosgame:container_name: dosgameimage: registry.cn-beijing.aliyuncs.com/wuxingge123/dosgame-web-docke…...
基于单片机的无线红外报警系统
**单片机设计介绍,基于单片机的无线红外报警系统 文章目录 一 概要二、功能设计设计思路 三、 软件设计原理图 五、 程序六、 文章目录 一 概要 基于单片机的无线红外报警系统是一种结合了单片机控制技术和无线红外传感技术的安防系统。该系统通过无线红外传感器实…...
【JAVAEE学习】探究Java中多线程的使用和重点及考点
˃͈꒵˂͈꒱ write in front ꒰˃͈꒵˂͈꒱ ʕ̯•͡˔•̯᷅ʔ大家好,我是xiaoxie.希望你看完之后,有不足之处请多多谅解,让我们一起共同进步૮₍❀ᴗ͈ . ᴗ͈ აxiaoxieʕ̯•͡˔•̯᷅ʔ—CSDN博客 本文由xiaoxieʕ̯•͡˔•̯᷅ʔ 原创 CSDN 如…...
Day81:服务攻防-开发框架安全SpringBootStruts2LaravelThinkPHPCVE复现
目录 PHP-框架安全-Thinkphp&Laravel Laravel CVE-2021-3129 RCE Thinkphp 版本3.X RCE-6.X RCE 版本6.X lang RCE J2EE-框架安全-SpringBoot&Struts2 Struct2 旧漏洞(CVE-2016-0785等) struts2 代码执行 (CVE-2020-17530)s2-061 Str…...
.kat6.l6st6r勒索病毒肆虐,这些应对策略或许能帮到你
引言: 近年来,网络安全问题日益凸显,其中勒索病毒更是成为了公众关注的焦点。其中,.kat6.l6st6r勒索病毒以其独特的传播方式和破坏力,给全球用户带来了极大的困扰。本文将深入探讨.kat6.l6st6r勒索病毒的特点…...
【kafka】Golang实现分布式Masscan任务调度系统
要求: 输出两个程序,一个命令行程序(命令行参数用flag)和一个服务端程序。 命令行程序支持通过命令行参数配置下发IP或IP段、端口、扫描带宽,然后将消息推送到kafka里面。 服务端程序: 从kafka消费者接收…...
日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする
日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする 1、前言(1)情况说明(2)工程师的信仰2、知识点(1) にする1,接续:名词+にする2,接续:疑问词+にする3,(A)は(B)にする。(2)復習:(1)复习句子(2)ために & ように(3)そう(4)にする3、…...
【WiFi帧结构】
文章目录 帧结构MAC头部管理帧 帧结构 Wi-Fi的帧分为三部分组成:MAC头部frame bodyFCS,其中MAC是固定格式的,frame body是可变长度。 MAC头部有frame control,duration,address1,address2,addre…...
基础测试工具使用经验
背景 vtune,perf, nsight system等基础测试工具,都是用过的,但是没有记录,都逐渐忘了。所以写这篇博客总结记录一下,只要以后发现新的用法,就记得来编辑补充一下 perf 比较基础的用法: 先改这…...
Java多线程实现之Callable接口深度解析
Java多线程实现之Callable接口深度解析 一、Callable接口概述1.1 接口定义1.2 与Runnable接口的对比1.3 Future接口与FutureTask类 二、Callable接口的基本使用方法2.1 传统方式实现Callable接口2.2 使用Lambda表达式简化Callable实现2.3 使用FutureTask类执行Callable任务 三、…...
涂鸦T5AI手搓语音、emoji、otto机器人从入门到实战
“🤖手搓TuyaAI语音指令 😍秒变表情包大师,让萌系Otto机器人🔥玩出智能新花样!开整!” 🤖 Otto机器人 → 直接点明主体 手搓TuyaAI语音 → 强调 自主编程/自定义 语音控制(TuyaAI…...
在鸿蒙HarmonyOS 5中使用DevEco Studio实现录音机应用
1. 项目配置与权限设置 1.1 配置module.json5 {"module": {"requestPermissions": [{"name": "ohos.permission.MICROPHONE","reason": "录音需要麦克风权限"},{"name": "ohos.permission.WRITE…...
SAP学习笔记 - 开发26 - 前端Fiori开发 OData V2 和 V4 的差异 (Deepseek整理)
上一章用到了V2 的概念,其实 Fiori当中还有 V4,咱们这一章来总结一下 V2 和 V4。 SAP学习笔记 - 开发25 - 前端Fiori开发 Remote OData Service(使用远端Odata服务),代理中间件(ui5-middleware-simpleproxy)-CSDN博客…...
蓝桥杯 冶炼金属
原题目链接 🔧 冶炼金属转换率推测题解 📜 原题描述 小蓝有一个神奇的炉子用于将普通金属 O O O 冶炼成为一种特殊金属 X X X。这个炉子有一个属性叫转换率 V V V,是一个正整数,表示每 V V V 个普通金属 O O O 可以冶炼出 …...
Fabric V2.5 通用溯源系统——增加图片上传与下载功能
fabric-trace项目在发布一年后,部署量已突破1000次,为支持更多场景,现新增支持图片信息上链,本文对图片上传、下载功能代码进行梳理,包含智能合约、后端、前端部分。 一、智能合约修改 为了增加图片信息上链溯源,需要对底层数据结构进行修改,在此对智能合约中的农产品数…...
